5 research outputs found

    Affective calibration of musical feature sets in an emotionally intelligent music composition system

    Get PDF
    Affectively driven algorithmic composition (AAC) is a rapidly growing field that exploits computer-aided composition in order to generate new music with particular emotional qualities or affective intentions. An AAC system was devised in order to generate a stimulus set covering nine discrete sectors of a two-dimensional emotion space by means of a 16-channel feed-forward artificial neural network. This system was used to generate a stimulus set of short pieces of music, which were rendered using a sampled piano timbre and evaluated by a group of experienced listeners who ascribed a two-dimensional valence-arousal coordinate to each stimulus. The underlying musical feature set, initially drawn from the literature, was subsequently adjusted by amplifying or attenuating the quantity of each feature in order to maximize the spread of stimuli in the valence-arousal space before a second listener evaluation was conducted. This process was repeated a third time in order to maximize the spread of valence-arousal coordinates ascribed to the generated stimulus set in comparison to a spread taken from an existing prerated database of stimuli, demonstrating that this prototype AAC system is capable of creating short sequences of music with a slight improvement on the range of emotion found in a stimulus set comprised of real-world, traditionally composed musical excerpts

    Computational Music Systems for Emotional Health and Wellbeing: A Review

    Get PDF
    Music is a powerful stimulus, and both active and receptive methods of engaging with music provide affordances for improving physical, mental and social health. The emergence of sophisticated computational methods also underscores the potential for novel music technologies to address a wider range of wellbeing outcomes. In this review, we focus on describing the current state of the literature on computational approaches to music generation for health and wellbeing and identifying possible future directions for research in this area

    Neural and physiological data from participants listening to affective music

    Get PDF
    Music provides a means of communicating affective meaning. However, the neurological mechanisms by which music induces affect are not fully understood. Our project sought to investigate this through a series of experiments into how humans react to affective musical stimuli and how physiological and neurological signals recorded from those participants change in accordance with self-reported changes in affect. In this paper, the datasets recorded over the course of this project are presented, including details of the musical stimuli, participant reports of their felt changes in affective states as they listened to the music, and concomitant recordings of physiological and neurological activity. We also include non-identifying meta data on our participant populations for purposes of further exploratory analysis. This data provides a large and valuable novel resource for researchers investigating emotion, music, and how they affect our neural and physiological activity

    Electroencephalography reflects the activity of sub-cortical brain regions during approach-withdrawal behaviour while listening to music

    Get PDF
    The ability of music to evoke activity changes in the core brain structures that underlie the experience of emotion suggests that it has the potential to be used in therapies for emotion disorders. A large volume of research has identified a network of sub-cortical brain regions underlying music-induced emotions. Additionally, separate evidence from electroencephalography (EEG) studies suggests that prefrontal asymmetry in the EEG reflects the approach-withdrawal response to music-induced emotion. However, fMRI and EEG measure quite different brain processes and we do not have a detailed understanding of the functional relationships between them in relation to music-induced emotion. We employ a joint EEG – fMRI paradigm to explore how EEG-based neural correlates of the approach-withdrawal response to music reflect activity changes in the sub-cortical emotional response network. The neural correlates examined are asymmetry in the prefrontal EEG, and the degree of disorder in that asymmetry over time, as measured by entropy. Participants’ EEG and fMRI were recorded simultaneously while the participants listened to music that had been specifically generated to target the elicitation of a wide range of affective states. While listening to this music, participants also continuously reported their felt affective states. Here we report on co-variations in the dynamics of these self-reports, the EEG, and the sub-cortical brain activity. We find that a set of sub-cortical brain regions in the emotional response network exhibits activity that significantly relates to prefrontal EEG asymmetry. Specifically, EEG in the pre-frontal cortex reflects not only cortical activity, but also changes in activity in the amygdala, posterior temporal cortex, and cerebellum. We also find that, while the magnitude of the asymmetry reflects activity in parts of the limbic and paralimbic systems, the entropy of that asymmetry reflects activity in parts of the autonomic response network such as the auditory cortex. This suggests that asymmetry magnitude reflects affective responses to music, while asymmetry entropy reflects autonomic responses to music. Thus, we demonstrate that it is possible to infer activity in the limbic and paralimbic systems from pre-frontal EEG asymmetry. These results show how EEG can be used to measure and monitor changes in the limbic and paralimbic systems. Specifically, they suggest that EEG asymmetry acts as an indicator of sub-cortical changes in activity induced by music. This shows that EEG may be used as a measure of the effectiveness of music therapy to evoke changes in activity in the sub-cortical emotion response network. This is also the first time that the activity of sub-cortical regions, normally considered “invisible” to EEG, has been shown to be characterisable directly from EEG dynamics measured during music listening

    L-Music: uma abordagem para composição musical assistida usando L-Systems

    Get PDF
    Generative music systems have been researched for an extended period of time. The scientific corpus of this research field is translating, currently, into the world of the everyday musician and composer. With these tools, the creative process of writing music can be augmented or completely replaced by machines. The work in this document aims to contribute to research in assisted music composition systems. To do so, a review on the state of the art of these fields was performed and we found that a plethora of methodologies and approaches each provide their own interesting results (to name a few, neural networks, statistical models, and formal grammars). We identified Lindenmayer Systems, or L-Systems, as the most interesting and least explored approach to develop an assisted music composition system prototype, aptly named L-Music, due to the ability of producing complex outputs from simple structures. L-Systems were initially proposed as a parallel string rewriting grammar to model algae plant growth. Their applications soon turned graphical (e.g., drawing fractals), and eventually they were applied to music generation. Given that our prototype is assistive, we also took the user interface and user experience design into its well-deserved consideration. Our implemented interface is straightforward, simple to use with a structured visual hierarchy and flow and enables musicians and composers to select their desired instruments; select L-Systems for generating music or create their own custom ones and edit musical parameters (e.g., scale and octave range) to further control the outcome of L-Music, which is musical fragments that a musician or composer can then use in their own works. Three musical interpretations on L-Systems were implemented: a random interpretation, a scale-based interpretation, and a polyphonic interpretation. All three approaches produced interesting musical ideas, which we found to be potentially usable by musicians and composers in their own creative works. Although positive results were obtained, the developed prototype has many improvements for future work. Further musical interpretations can be added, as well as increasing the number of possible musical parameters that a user can edit. We also identified the possibility of giving the user control over what musical meaning L-Systems have as an interesting future challenge.Sistemas de geração de música têm sido alvo de investigação durante períodos alargados de tempo. Recentemente, tem havido esforços em passar o conhecimento adquirido de sistemas de geração de música autónomos e assistidos para as mãos do músico e compositor. Com estas ferramentas, o processo criativo pode ser enaltecido ou completamente substituído por máquinas. O presente trabalho visa contribuir para a investigação de sistemas de composição musical assistida. Para tal, foi efetuado um estudo do estado da arte destas temáticas, sendo que foram encontradas diversas metodologias que ofereciam resultados interessantes de um ponto de vista técnico e musical. Os sistemas de Lindenmayer, ou L-Systems, foram selecionados como a abordagem mais interessante, e menos explorada, para desenvolver um protótipo de um sistema de composição musical assistido com o nome L-Music, devido à sua capacidade de produzirem resultados complexos a partir de estruturas simples. Os L-Systems, inicialmente propostos para modelar o crescimento de plantas de algas, são gramáticas formais, cujo processo de reescrita de strings acontece de forma paralela. As suas aplicações rapidamente evoluíram para interpretações gráficas (p.e., desenhar fractais), e eventualmente também foram aplicados à geração de música. Dada a natureza assistida do protótipo desenvolvido, houve uma especial atenção dada ao design da interface e experiência do utilizador. Esta, é concisa e simples, tendo uma hierarquia visual estruturada para oferecer uma orientação coesa ao utilizador. Neste protótipo, os utilizadores podem selecionar instrumentos; selecionar L-Systems ou criar os seus próprios, e editar parâmetros musicais (p.e., escala e intervalo de oitavas) de forma a gerarem excertos musicais que possam usar nas suas próprias composições. Foram implementadas três interpretações musicais de L-Systems: uma interpretação aleatória, uma interpretação à base de escalas e uma interpretação polifónica. Todas as interpretações produziram resultados musicais interessantes, e provaram ter potencial para serem utilizadas por músicos e compositores nos seus trabalhos criativos. Embora tenham sido alcançados resultados positivos, o protótipo desenvolvido apresenta múltiplas melhorias para trabalho futuro. Entre elas estão, por exemplo, a adição de mais interpretações musicais e a adição de mais parâmetros musicais editáveis pelo utilizador. A possibilidade de um utilizador controlar o significado musical de um L-System também foi identificada como uma proposta futura relevante
    corecore