1,088 research outputs found

    COLANDER: Convolving Layer Network Derivation for E-Recommendations

    Get PDF
    Many consumer facing companies have large scale data sets that they use to create recommendations for their users. These recommendations are usually based off information the company has on the user and on the item in question. Based on these two sets of features, models are created and tuned to produce the best possible recommendations. A third set of data that exists in most cases is the presence of past interactions a user may have had with other items. The relationships that a model can identify between this information and the other two types of data, we believe, can improve the prediction of how a user may interact with the given item. We propose a method that can inform the model of these relationships during the training phase while only relying on the user and item data during the prediction phase. Using ideas from convolutional neural networks (CNN) and collaborative filtering approaches, our method manipulated the weights in the first layer of our network design in a way that achieves this goal

    Machine Learning based Models for Fresh Produce Yield and Price Forecasting for Strawberry Fruit

    Get PDF
    Building market price forecasting models of Fresh Produce (FP) is crucial to protect retailers and consumers from highly priced FP. However, the task of forecasting FP prices is highly complex due to the very short shelf life of FP, inability to store for long term and external factors like weather and climate change. This forecasting problem has been traditionally modelled as a time series problem. Models for grain yield forecasting and other non-agricultural prices forecasting are common. However, forecasting of FP prices is recent and has not been fully explored. In this thesis, the forecasting models built to fill this void are solely machine learning based which is also a novelty. The growth and success of deep learning, a type of machine learning algorithm, has largely been attributed to the availability of big data and high end computational power. In this thesis, work is done on building several machine learning models (both conventional and deep learning based) to predict future yield and prices of FP (price forecast of strawberries are said to be more difficult than other FP and hence is used here as the main product). The data used in building these prediction models comprises of California weather data, California strawberry yield, California strawberry farm-gate prices and a retailer purchase price data. A comparison of the various prediction models is done based on a new aggregated error measure (AGM) proposed in this thesis which combines mean absolute error, mean squared error and R^2 coefficient of determination. The best two models are found to be an Attention CNN-LSTM (AC-LSTM) and an Attention ConvLSTM (ACV-LSTM). Different stacking ensemble techniques such as voting regressor and stacking with Support vector Regression (SVR) are then utilized to come up with the best prediction. The experiment results show that across the various examined applications, the proposed model which is a stacking ensemble of the AC-LSTM and ACV-LSTM using a linear SVR is the best performing based on the proposed aggregated error measure. To show the robustness of the proposed model, it was used also tested for predicting WTI and Brent crude oil prices and the results proved consistent with that of the FP price prediction

    Insights into cosmological structure formation with machine learning

    Get PDF
    Our modern understanding of cosmological structure formation posits that small matter density fluctuations present in the early Universe, as traced by the cosmic microwave background, grow via gravitational instability to form extended haloes of dark matter. A theoretical understanding of the structure, evolution and formation of dark matter haloes is an essential step towards unravelling the intricate connection between halo and galaxy formation, needed to test our cosmological model against data from upcoming galaxy surveys. Physical understanding of the process of dark matter halo formation is made difficult by the highly non-linear nature of the haloes' evolution. I describe a new approach to gain physical insight into cosmological structure formation based on machine learning. This approach combines the ability of machine learning algorithms to learn non-linear relationships, with techniques that enable us to physically interpret the learnt mapping. I describe applications of the method, with the aim of investigating which aspects of the early universe density field impact the later formation of dark matter haloes. First I present a case where the process of halo formation is turned into a binary classification problem; the algorithm predicts whether or not dark matter `particles' in the initial conditions of a simulation will collapse into haloes of a given mass range. Second, I present its generalization to regression, where the algorithm infers the final mass of the halo to which each particle will later belong. I show that the initial tidal shear does not play a significant role compared to the initial density field in establishing final halo masses. Finally, I demonstrate that extending the framework to deep learning algorithms such as convolutional neural networks allows us to explore connections between the early universe and late time haloes beyond those studied by existing analytic approximations of halo collapse
    • …
    corecore