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ABSTRACT

COLANDER- Convolving Layer Network Derivation for E-Recommendations

Dmitriy Timokhin

Many consumer facing companies have large scale data sets that they use to create

recommendations for their users. These recommendations are usually based off in-

formation the company has on the user and on the item in question. Based on these

two sets of features, models are created and tuned to produce the best possible rec-

ommendations. A third set of data that exists in most cases is the presence of past

interactions a user may have had with other items. The relationships that a model

can identify between this information and the other two types of data, we believe, can

improve the prediction of how a user may interact with the given item. We propose

a method that can inform the model of these relationships during the training phase

while only relying on the user and item data during the prediction phase. Using ideas

from convolutional neural networks (CNN) and collaborative filtering approaches, our

method manipulated the weights in the first layer of our network design in a way that

achieves this goal.
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Chapter 1

INTRODUCTION

Predictive modeling is a branch of mathematics that focuses on predicting out-

comes from historical data. The field has grown rapidly to include subfields of classi-

fication and regression modeling [14]. Many different applications of predictive mod-

eling exist in industry such as predicting temperature, predicting the stock market,

and recommending movies to users. Although these are all predicting modeling tasks

they can be viewed as different problems. The problem of predicting weather may

be associated with the previous temperatures recorded in the location, among many

other things. For this problem, the output might be a numerical value in Fahrenheit

which is a numerical output. On the other hand, for recommending movies the out-

come is a movie or set of movies that a user might enjoy watching. Predicting movies

one might enjoy falls under the umbrella of recommender systems. The work in this

thesis is primarily focused on the problems facing current research in this field.

Many predictive modeling approaches, such as those commonly seen in recom-

mender systems can be thought of in terms of interactions between two types of

entities: users and items. In this context a user is considered a person that interacts

with items, where an item can be thought of as something the user can interact with,

such as movies, clothes, and books. A third type of entity can be identified as an

interaction. An interaction is the reaction of the user to the item. These reactions

can be both quantitative and qualitative. An example of a quantitative reaction is

how long someone spent watching a movie, if not all of it. On the other hand a qual-

itative reaction can be given to the movie such as “Dislike” or “Would watch again”.

Predicting these reactions can be difficult without the proper information about the

users and items. Metadata about the user and item can provide tremendous informa-
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tion to mathematical models to predict the interaction. The inclusion or exclusion of

this information leads to two approaches to creating predictions.

The two approaches most commonly used are collaborative filtering and modeling

with additional metadata on the items and users [34]. Collaborative filtering is the

group of models that uses only the information presented in a NxM matrix of interac-

tions between users and items where there are N users and M items. One possibility

for an element of this matrix be a rating that a specific user gives to a movie. This

matrix is shown below in Figure 1.1

Figure 1.1: Collaborative filtering matrix

From this type of matrix many methods have been developed to create predictions

on how a user may react to an item it has not seen before [2]. One important aspect of

this matrix is that is is sparse. This is to say that individual users may have interacted

with some of the items but most likely not all of them, resulting in many elements

being empty. Although sparse, these matrixes hold a lot of information useful for

collaborative filtering. Collaborative filtering methods are based on the idea that if

two users agree on a lot of their interactions (e.g. they like the same movies) then

user A will probably like the items user B liked, that user A has not interacted with.
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Figure 1.2: Basic recommender system

An example of this is if user A and user B have watched many of the same movies,

but user B has watched Star Wars and user B has not which is similarly depicted in

Figure 1.2. Using this logic we can recommend Star Wars to user A.

The second approach mentioned includes not only just the fact that a user has

interacted with the item, but also information on the user, item, and their interactions.

This approach computes similarity scores between two users or between two items

based on the additional information available [26].

Star Trek Dr.Who Farscape Firefly

John 8 7 8 9
Ally 7 9 8 ?

Table 1.1: Table of ratings (1-10) of television shows for John and Ally

If we look at example as shown in table 1.1, we have two users, John and Ally

whose ratings for a few shows are observed. We can see that Both users really like

Star Trek, Dr.Who, and Farscape which are all part of the science fiction genre. This

3



may let us conclude that both users appreciate science fiction shows. Another show

in 1.1 is Firefly which Ally has not seen. Our ability to deduce that Ally likes science

fiction shows allows us to recommend Firefly to Ally without a collaborative-filtering

inspired comparison of Ally’s preferences to those of other users. Similar approaches

can be used to reason about similarities between users. If several users like the same

item (e.g., a specific song), we may want to find out what is common about these

users (age, country of origin, favorite color, etc. . . ), and when we encounter another

user who matches the same demographic information, the song will be recommended

to that user. Out of these two approaches this thesis is concerned with the second

one, which focuses on including metadata associated with the users and items.

Figure 1.3: User, item, and interaction metadata example for item pur-
chases

There are three types of information that is potentially available to meta-data-

based predictive methods: user metadata, item metadata, and interaction metadata.

User metadata is any information on the specific user. This can be their age, sex, and
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location to name a few. Item metadata is the data associated with the item. Some

examples for data on an item can be its price, average rating, weight, and name.

What is most interesting to us though is the interaction metadata. Interaction

metadata is any information available about the interaction between the user and

the item in excess of the numeric quantity (such as level of enjoyment) that we are

trying to predict. For example, when a user interacts with an item on Amazon.com,

in addition to the eventual ”bought/not bought” flag, Amazon can capture other

information about the interaction: time spent on the product page, number of links

on the page clicked, number of times the user viewed the page over the course of a

month. Another example of some features associated with the different kinds of data

for a user interacting with clothing items are depicted in Figure 1.3.

Most current research being done currently focuses on using user metadata and

item metadata in order to create recommendations, while collaborative filtering does

not even use metadata. One of the main issues with training models that are capable

of generating good predictions is teaching the model the past relationships between

users and items aside from simple interest scores. There are many examples of this in

industry but a few are Amazon and Spotify. Amazon may have information on how

many times a user clicked other items before purchasing the one they did. They might

also know how long a user spent on the item page before purchasing it. Spotify can

keep track of how many times a user listened to a specific song, or how many songs a

user skipped before reaching the one they listened to. All of this information is highly

correlated with how a user would react to an item but is quite difficult to incorporate

into the model. This is because during testing predicting are being made on these

interactions for items the user has never seen. This thesis focuses on addressing this

problem.
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We propose a method, COLANDER (Convolving layer network derivation for

E-Recommendations), that can incorporate the previous relationships between user

metadata, item metadata, and interaction metadata for new items during testing

time. Traditional modern techniques of prediction involve one to have training fea-

tures and a value to predict that is related to the training features. In this way, the

model has more information during training than testing because not all of the rela-

tionships between the predictor variables and dependent variables are incorporated

into how the models are trained. Using the previous definitions of user metadata,

item metadata, and interaction metadata, we propose a model that incorporates all

three categories into the training features in order to build these relationships. We not

only teach the model to predict interaction metadata from user metadata, and item

metadata but we aim to teach the model to use past knowledge of the interactions

between them to predict future interaction metadata. We approach this process by

investigating methodology that allows training on an extended feature vector includ-

ing, for example, these three groups of metadata. During testing we may not have all

three types of data and thus our model aims to include only the provided informa-

tion to make predictions on the one missing. Our method non-trivially embeds the

information gained from all three of these data types while only testing on a subset

of features. In this we attempt to solve the problem of including valuable information

during training but not during testing.

The main contributions of this thesis are neural network models based on COLAN-

DER that incorporate user-item interaction data during training and an experimental

study comparing the performance of the proposed model to each other and to the

baseline model.

This document is organized into seven chapters. Chapter 2 discusses the back-

ground and related works required for understanding the methodology described in

this thesis. Then, the methods we propose are introduced with their technical ex-
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planations in Chapter 3. We further describe the implementation of the architecture

in Chapter 4 and how we evaluated the performance of the model through a series

of research questions in Chapter 5. Chapter 6 discusses the results of those research

questions with tables and discussion. Finally, Chapter 7 includes the conclusions and

further work that can be done in the future that builds off of the contributions of this

thesis.
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Chapter 2

BACKGROUND AND RELATED WORKS

This thesis builds off of important contributions made by researchers in the field

of predictive modeling, recommender systems, and neural networks. Section 2.1 cov-

ers some of the historical approaches to building recommender systems. Section 2.2

introduces neural networks and their fundamentals which are needed to further de-

velop the work in this thesis. Finally, section 2.3 builds upon the material in Section

2.2 to cover some of the work done in current hybrid recommender approaches. Sec-

tion 2.3 is postponed until the end of the chapter due to the dependence on neural

networks which are discussed in Section 2.2. Section 2.4 discusses the Digital Democ-

racy project as related to Nick Russo’s work which provided us with a dataset for our

validation experiments[27].

2.1 History of recommender systems

This section covers some of the historical and more modern approaches of creating

recommender systems. Many modern recommendation systems are based on machine

learning models and involve large data-sets that contain information on users, items,

and their interactions. Originally, before the computing explosion that allowed for

such models, recommendation systems primarily used the so called memory-based

methods which computed recommendations directly from data without any model

training. Faster compute has lead to the rise of new modeling techniques in clustering

and classification. Furthermore, neural networks started to emerge at the forefront

of big data analysis that involves recommendation systems. In addition to different
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approaches to constructing recommendations, recommendation systems also differ on

what data is used in the process.

We illustrate two different approaches available in this field by comparing recom-

mendation engines of two well known streaming platforms, Pandora and Last.Fm 1

[23]. Pandora’s recommendations are based on the qualities of the music and specific

features a song may have. Examples of features Pandora uses are the presence of a

guitar solo or if the song has a lead male singer. On the other hand, Last.fm simply

records what songs users have listened to. Similar users are identified by comparing

these lists of songs. From these similar users new songs can be recommended and

the process starts all over again. In essence the Last.fm approach is a collaborative

filtering approach and the Pandora approach is one that includes meta-data about

the songs themselves. Although both of these approaches are valid, some of the more

recent work has been in hybrid systems where collaborative filtering approaches have

been combined with meta-data approaches.

2.1.1 Collaborative Filtering

One of the most widely used methods under the recommender system umbrella is

collaborative filtering. It is the set of algorithms that focus on identifying similar en-

tities based on their preferences and generating recommendations using the interests

of these similar entities [34]. This can best be described through an example. We can

imagine a scenario where we have data on what movies many users watched. Some of

these users might have very similar watching history and using this information we

can provide recommendations to them based on what similar users have watched. In

this way the users info is filtered to only include similar users [17]. Then out of those

a recommendation can be made. This approach has been pushed to recommending

1https://www.pandora.com/, https://www.last.fm/

9



things like music and shopping items to name a few. Furthermore, the simplicity

of this method is what limited the accuracy of the approach. It tends to not per-

form well in complicated tasks involving high dimensional features, and cannot make

recommendations for items it has never seen before.

Figure 2.1: Collaborative filtering

Above, in Figure 2.1 is another example of the phenomenon where we match

the soda as a possible item that the other boy may like. Another example is how

Last.fm provided music recommendations as mentioned in Section 2.1. These are

fairly standard examples that follow the main principles of collaborative filtering.

These principles have evolved into more complex ideas.

Distance metrics such as Cosine Similarity and the Pearson Correlation can be

used to identify similarity between users or items [25], [20]. Use of these metrics for

similarity scores is often combined with the use of K Nearest Neighbors (KNN) to

identify users or items most similar to the user/item for which the recommendation

is constructed [16]. Some other more involved metrics have been developed as well

[30]. Furthermore, more complicated methods such as Markov models can be used in

combination with PCA to improve dimensionality [22] [28].
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The field of collaborative filtering is constantly changing, with new methods being

proposed. A recent work by Jun Ai et al. takes generic collaborative filtering to the

next level [3]. This work focuses on creating a graph based architecture that is used

to build relationships between items. In this way the authors use a metric known as

”degree of centrality” which is meant to identify the inherent importance of the item

to other items in the graph. Degree of centrality can be used to create metrics similar

to the Pearson Coefficient above that can provide accurate depictions of relationships

between items.

With the rise of neural networks to take over almost every modeling task as the

new state of the art, collaborative filtering is no exception. Strub et al introduces

a new kind of collaborative filtering that incorporates de-noising auto encoders into

sparse collaborative filtering tasks to achieve state of the art performance [33]. The

authors identified that for user interactions with items, the majority of the vector is

usually empty because many users do not interact with the same items. Thus, they

impose an auto-encoder approach that constructs a user vector similar to how an

embedding layer would be created for an image auto-encoder 2 [14].

Although collaborative filtering is effective in its own right, most of the modern

advances in recommender systems revolve around clustering and classification tasks

that involve user and item metadata.

2.1.2 Clustering/Classification

Advances in compute lead to an increase in model based approaches being im-

plemented for all sorts of tasks. Clustering techniques can help build recommender

systems by clustering individuals into groups to identify similar individuals. One of

2Auto-encoders are a special type of neural network whose input and output are identical. The
purpose of this symmetry is to create a compressed representation of the input through a set of
weights that are manipulated through backpropagation
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the first methods used is K-means clustering [18]. This involves a metric to be used,

such as the Manhattan Distance, to find the distance between individuals based on

their preferences [10]. The interesting thing about this method is one can identify

the patterns behind why people are grouped together. These groups can be humanly

explainable in certain situations. One such situation is if there is a subpopulation of

users of a movie streaming service who enjoy watching sci-fi movies. K-Means might

identify that the mathematical distance between ratings for these individuals is min-

imal and group them into one category that can be explained as the group of users

who like sci-fi movies. Another example of a possible use case for K-means is identi-

fying authors of manuscripts. By generating many features that describe the prose of

manuscripts K-Means can identify groups of writing samples that have similar styles.

These groups can represent different authors. There have been many more instances

of useful applications surrounding clustering but classification techniques have seen

more development in recent times.

Simple classification techniques such as KNN(K-Nearest Neighbors) have been

useful in their own set of tasks [16]. Like K-means, KNN also incorporates a distance

metric but it simply finds the nearest K neighbors to a user where K is a positive

integer. The distance metrics used are identical to the ones that can be used for

K-means due to the fact that both approaches build a matrix of metrics showing

the mathematical distances between values in the dataset. This approach is funda-

mentally similar to collaborative filtering since it filters for individuals with features

similar to others which can be inherently viewed as recommendations. A contrast

with collaborative filtering however is that a different set of features is being used.

The set of features for KNN can include the metadata associated with the items

or users being compared. This inherent difference is what allows modeling tasks to

outperform collaborative filtering in most instances.
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Some of the more popular approaches within recommender system tasks and gen-

eral classification tasks have been SVM’S and GBM’s (Gradient Boosted Machines)

[7], [13].

SVM’s (Support Vector Machines) are a class of techniques that have been widely

successful in classification tasks [8]. The main premise of what makes them successful

it that they build a hyper plane, drawn from only a few important separating points,

to split the data points into their corresponding classes. This hyper-plane is built

by identifying the closest points from different classes and maximizing the distance

between them. The distance is commonly referred to as the margin. Many other

methods build separating hyper-planes but what makes SVM’s special is that they

only use a subset of points in the data space. This is due to the assumption that

the easy to classify points will not be useful in generating a separating plane and

that only the points from each class that are closest together are valuable. The

points chosen to create this hyper-plane are known as support vectors. An important

consideration is that a hyper-plane can be formed with any number of dimensions. If

only two dimensions are considered this separation is a line and if three dimensions

are considered it is a plane. This can be extrapolated to many more dimensions

which is known as kerneling [7]. In Figure 2.2 on the left hand side we have a possible

scenario where the separation between classes is non-trivial in two dimensional space.

If we consider three dimensional space though a clear separation can be created as

shown on the right hand side of the Figure.

Figure 2.2: SVM separation example
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Another popular set of models for predictive modeling is known as GBM’s (Gra-

dient Boosted Machines) [13]. This set of algorithms fit under the idea of boosting.

One of the first boosting algorithms developed was AdaBoost which pioneered the

methodology for further work to be done [6]. AdaBoost relies on the fundamental idea

of boosting which is that many weak classifiers can be used together to form a strong

one. After one weak classifier is created, the data is weighted in such a way that dif-

ficult to classify observations are weighted more and the easy to classify observations

less. This new data set is used to generate another weak classifier and the process is

repeated for many iterations. Now, the predictions generated from each classifier are

aggregated such that a majority prediction class is identified. Gradient boosting is

built off of this original approach pioneered by AdaBoost but it differs in that weak

learners are built off of optimizing a user defined loss function through gradient de-

scent as supposed to pure classification accuracy. Consequent weak learners are added

to the model in a way that lowers the error of this loss function. This fundamental

idea of using many weak classifiers has been built up on with different approaches

being used to build consecutive classifiers. Furthermore, the idea of boosting is under

an umbrella of approaches known as ensemble methods, which are approaches that

create many models and combine them in a way to create more accurate results [11].

Similarly to the other classification techniques mentioned, SVM’s and GBM’s can

be used to create powerful recommender systems. Fortune et al proposed a method

that does real time news recommendation based on users previous history on the site

[12]. The authors used an SVM approach that predicted the top three categories of

news the user would be interested in. By using SVM’s they reached results that are

better than other, more generic, collaborative filtering methods. GBM’s have also

seen similar success, where Volkovs et al won an ACM contest addressing the cold

start problem in recommender systems [37]. The task was to provide recommenda-

tions for users based on user-job interactions from a career oriented social network.
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Experimenting with both a GBM model and a deep neural network the authors found

more success and faster training time with the GBM model.

2.2 Neural Networks

Neural networks are mathematical models that allow one to take a set of inputs

and associated outputs and learn the relationships between the two [32]. An example

of this is taking a picture of either a cat or a dog and being able to predict which one

it is using the model. Neural networks learn from many training samples and identify

patterns that differentiate the inputs to retrieve the proper outputs. The simplest of

neural networks consists of an input layer, a hidden layer, and an output layer.

Figure 2.3: Artificial Neuron

In Figure 2.3 there is a visual example of a neuron. An input matrix defined by

X is transformed through a dot product with a weight matrix defined by w as shown

by the operation below which is copied from Figure 2.3.

n∑
j=1

xjwj
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After this linear transformation takes place an activation function is applied, such

as a RelU or sigmoid as shown below by the symbol σ.

yj = σ(
n∑

j=1

xjwj)

A ReLu function simply takes a value and if it is negative the value becomes zero,

otherwise the value remains the same [24].

RelU : f(x) = max(0, x)

Sigmoid : f(x) =
1

1 + e−x

Many of these kinds of functions exist and are crucial to the success of neural

networks. If the activation function is ignored, the neural network becomes a simple

linear regression operation which is only able to identify linear relationships in the

data unlike a neural network.

Multiple layers of these neurons can be connected to each other as shown in Figure

2.4 denoted by filled circles.
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Figure 2.4: Multi-layer neural network

The outputs of one neuron are sent to the next neuron where each neuron in a given

layer is usually connected to every neuron in the consecutive layer. Once the flow of

the data hits the last layer the output prediction is generated. After this ”forward

propagation” step the network must learn from errors it made in its predictions. Loss

functions such as MSE for regression, or Cross Entropy for classification are used

to generate gradients that represent how far off the prediction is. These losses are

generated by comparing the predicted output and the ground truth, whether it is a

numerical value for regression or a class for classification. This loss is then propagated

backwards through the network by a step known as ”backpropagation” [14] which uses

partial derivatives to update the weights of each neuron in the network. This process

of forward and backpropogation occurs many times in order to train the network.

2.2.1 Convolutional Neural Networks

Convolutional neural networks (CNN’s) are an important influence on the work

of this paper. A CNN is a type of neural network that primarily focuses on image

classification. They were originally developed in 1990 By Le-Cun [21]. Regular neural
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networks struggled in image recognition tasks as the number of parameters exploded

dramatically with the size of input images and the number of layers needed to create

a adequate model. The premise of a neural network is still captured by CNN’s with

training being done through forward propagation and backpropagation. Although

similar in nature the addition of the convolutional layer and pooler layer are what

make it so beneficial in tasks involving images or videos. Although many different

types of convolutions exist nowadays, we are primarily focused on the basic convo-

lution layer. In a CNN, the input is usually an image which can be thought of as a

matrix of size M x N x 1 in the case of a black and white image. This matrix is then

processed through the use of a filter to create a output map as shown below in Figure

2.5.

Figure 2.5: Convolutional layer

In Figure 2.5 the filter ”walks” through the image and a dot product is performed

with a identically sized subsection of the original image in order to produce the filtered

output. This process allows the network to identify a filter pattern anywhere in the

image. The dot product operation is what is known as convolution and is crucial to

understanding the work of this thesis. Filters can identify features independently of

location in the image which is what makes them so powerful. Convolutional layers

can occur back to back in order to identify more specific features as the image gets

smaller after each step of the network. For example, if our network is trying to classify
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whether an image is a dog or a cat, we might see the first layer identify head shapes

or body position while the farther layers may find whiskers or ears of specific shapes

that are pertinent to a dog or cat. CNN’s allow features such as the mentioned ears

or whiskers to be identified anywhere in the image due to the way filters are pushed

through each section of the image. In Figure 2.6 a simple example is shown. The

features a network has identified are depicted in green which include the whiskers,

ears, and tail. On the right hand side of the Figure the representation of the cat is

shown which is what a possible network captures and uses to distinguish from a dog

in our previous example.

Figure 2.6: Convolutional example using cats

Figure 2.7: Feature identification and classification
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In Figure 2.7 there are multiple images of cats, each containing ears, a nose,

and chin. After these images are pushed through the convolutional layer, assuming

the network has been trained, filters will be propagated through the image. In our

oversimplified example, these filters are ears, a nose, and a chin. Please note that

in a real convolutional layer it is highly unlikely that filters will be this defined. As

shown in the three images in the second column, the convolutional layer will identify

these features anywhere in the image.

The filters used in this convolution step are trained through backpropagation

similarly to a regular neural network [15]. That is to say that the updating of weights

can be calculated using partial derivative calculations with respect to the loss function.

Although the work of this thesis does not directly use convolutional layers it does

incorporate a similar idea of performing a convolution between matrices. This is to

say that the idea of local feature recognition can be applied to domains outside of

images, where similar patters to the mentioned whiskers, tail, or ears for cats may

exist. These patterns can be thought of as a feature that is detached from the notion

of where in the input matrix it shows up such as the presence of whiskers is.

2.3 Hybrid of modeling and collaborative filtering approaches

A hybrid recommender system is one that incorporates both modeling and collab-

orative filtering approaches. This is to say that not only is a user-item matrix used

but also content-based metadata. When we think of hybrid systems, a good example

is Amazon. There are many individuals with similar shopping habits as a specific

user and thus Amazon’s collaborative filtering can easily identify what that user likes

to shop for. Furthermore, by including modeling approaches that incorporate the

metadata between items and users as well as collaborative filtering scoring, Amazon

can provide more unique recommendations to individuals. Another example is Netflix
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and its movie recommendation models. Using only the pertinent data to predictions

can be very useful. When recommending horror movies it makes sense to only look

at the horror movie watching history of the users in order to match users with similar

taste.

Recommendation systems built on collaborative filtering suffer from the so called

”cold start” problem - inability to recommend newly added items due to lack of score

information for them [31]. When not much data is available on individuals and their

interactions with items, those items will be incorrectly recommended to individuals

if at all. Thus a combination of collaborative filtering and modeling is critical.

There exist a few different methods of combining the two approaches. A survey

on hybrid recommender system models describes a few of these methods that can be

used [35]. One such approach simply performs collaborative filtering and content-

based modeling in parallel and then aggregates the results in some way. An example

of this is if a list of recommended movies is generated for a user from collaborative

filtering and a similar list from content-based modeling then the movies that appear

in both lists are chosen as the final recommendations.

Another method for combining the approaches is to generate data artifacts that

are representative of both collaborative filtering and content metadata and use them

in conjunction to generate a model. An example of this method in action is the

”Deep and Wide network” [5]. This network can be thought of as two different

networks working together to create a recommendation. For example, the wide part

of the network can be used to capture the matrix of user-movie ratings from Netflix

through a simple linear model. On the other hand, the deep side of the network can

be used for the large set of content features describing the specifics of each movie and

the user metadata. The value of splitting the two data artifacts is that the network
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can ”memorize” the user-item interactions while ”generalize” on how a user would

react to an unseen movie through the deep network.

2.4 Related Work

This thesis grew out of the work performed as part of Cal Poly’s Digital Democ-

racy project [27]. This project, undertaken by faculty and students from California

Polytechnic State University, attempts to democratize the information captured in

legislative hearings. These hearings consist of committee members discussing bills

and whether or not they should be passed. The project is primarily focused on tran-

scribing these committee meetings and providing users the ability to quickly identify

what speakers were present and their contributions to the floor. These contributions

can be monologues or votes, among many others. Furthermore, things like changes to

the bill or authorship are also recorded for each bill through the video metric pipelines

built by the digital democracy team.

2.4.1 DISH

Previously, a fellow Cal Poly student, Nick Russo attempted to solve a problem

within a similar space through his thesis [27]. Although his work is primarily focused

on the embeddings of a neural network, the network architecture used was a motiva-

tion for this work. His work uses an architecture that consists of a similar framework

of items, users, and their interactions. Though in the work it is in the context of leg-

islators, bill proceedings, and their interactions. His main focus is on the embeddings

created between the items and users that can allow one to identify the feelings a leg-

islator may have towards a certain bill. This kind of application proves to be a great

example of something that could benefit from the ideas discussed in this thesis. The

network presented in his work is designed to address the same problem as the work
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in this thesis though it does not actively use the information from the interactions

while predicting future interactions using only the legislators and bill proceedings.

This important distinction is what we believe gives our network a benefit in terms of

prediction and the incorporation of prior knowledge of interactions into the model.

Figure 2.8: DISH network

The DiSH neural network architecture presented in Figure 2.8 was designed to

take advantage of user-item interactions (in case of DiSH: legislator’s activity w.r.t.

a bill) during the training process. However, the version of the DiSH neural network

that is used for predicting does not contain any information (i.e., weights) influenced

by those user-item interactions. The COLANDER model proposed in this thesis seeks

to alter the DiSH neural network architecture in order to enable the prediction neural
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network to include information from the training neural network about the user-item

interactions.

2.5 Data

The dataset used for evaluating the network described in this thesis is generated

by similar means to the work described in DiSH [27]. Using the Digital Democracy

projects, database (DDDB) several sources of data are extracted into one dataset that

fits the format necessary for this thesis. The database and the kinds of information

it contains is described in the DiSH paper [27].

Recalling the ideas of user metadata, item metadata, and interaction metadata,

we use legislator information, bill information, and activity information respectively.

Here legislator information contains data like party, district, and committee mem-

bership among others. Bill information represents anything related to a specific bill

such as bill status, number of senate hearings, and total ayes to name a few. Activity

information represents how a legislator interacted with a specific bill. These features

include data such as speaking time and number of utterances. Through these fea-

tures, approximately 83000 rows are produced by the data generation and around 300

features across the three types of data points.

For the purposes of our experiments, we identify the variable that will be denoted

as the dependent variable to be whether or not the legislator voted with their party.

This is the variable that we measured using predicted accuracy in order to establish

model performance.
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2.5.1 Legislator features

A total of 10 different features are represented in the legislator feature set extracted

from (DDDB). These represent the user metadata that is used in our network.

Legislator features
Attribute Description Data Type Number of

Columns
Party Whether the legisla-

tor is a Democrat or
Republican,

One-hot encoded 2

House Whether the legisla-
tor is in the Senate or
Assembly

One-hot encoded 2

District The Assembly or Dis-
trict number.

One-hot encoded
vectors

120

Committee
Membership

The number of com-
mittees a legislator
served on a a Chair,
Co-chair, Vice-Chair
or Member.

Numeric 4

Ayes per bill The average of ayes
per bill for the legis-
lator.

Numeric 1

Noes per bill The average number
of noes per bill for
the legislator.

Numeric 1

Abstinence’s per
bill

The average number
of abstinence’s per
bill for the legislator.

Numeric 1

Total author-
ship

Total number of bills
that the legislator
authored.

Numeric 1

Table 2.1: Legislator features

2.5.2 Bill features

Bill features represent the information of the bill and what the status of it is. The

bill features used are shown in Table 2.2.
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Legislator features
Attribute Description Data Type Number of

Columns
Bill Status The final status of

the bill.
One-hot encoded
vector

12

Number of ver-
sions

The number of ver-
sions the bill went
through

Numeric 1

Number of hear-
ings

The number of hear-
ings in the assembly,
senate, or joint.

Numeric 3

Number of votes Number of democrat-
ic/republican legisla-
tors that abstained,
voted aye, or voted
Noe the bill.

One-hot encoded
vector

6

Table 2.2: Bill features

2.5.3 Interaction features

Interaction features represent how the legislator interacted with a given bill through-

out the proceedings. This is shown in Table: 2.3
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Legislator features
Attribute Description Data Type Number of

Columns
Author Whether or not the

legislator was an au-
thor on the bill.

One-hot encoded
vector

1

Average Utter-
ance time

The average length
of a legislator’s utter-
ances on a bill.

Numeric 1

Average Bill
Discussion Time

The Average time
a legislator spent
speaking at each bill
discussion for a bill.

Numeric 1

Number of Ut-
terances

The total number of
utterances the leg-
islator made on the
bill

Numeric 1

Time Spoken The total time the
legislator spent
speaking on the bill

Numeric 1

Voted with
Party

Whether or not the
legislator voted with
their respective party
on the bill

One-hot-vector 1

Table 2.3: Interaction features
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Chapter 3

METHODS

In the previous chapters we referenced the notions of user metadata, item meta-

data, and interaction metadata. User metadata is any information available on the

user. Item metadata is information on the entity and interaction metadata is data

on how users and the items interact. We hinted at the difficulty of incorporating

interaction metadata into a prediction model during training because the data will

not be available during testing. An example of this is if a model is attempting to

generate predictions on how a user would react to a Netflix movie. This could be a

rating or review. The user metadata in this example can be age, zip code, gender,

and time spent watching action movies. Item metadata can be genre, length, title,

actors, and director. Interaction metadata can be time spent watching the movie,

number of pauses, rating given to the movie, movie start time, and times watched.

We might have information on the user and the movie but since the user has never

seen the movie we would not know how many hours they spent watching it or at what

time they began watching it; this is all information generated after one has seen it.

On the other hand, we would have this information for other movies that the user

has already seen.

We propose a method that uses available user-item interaction data during the

recommendation model training process. To refer back to the Netflix example, we

would be incorporating the knowledge of relationships between the interaction meta-

data for movies the user has already seen. These relationships will be ingrained in

the model during training, but during testing we will be only using the user metadata

along with item metadata. Incorporating relationships between interaction metadata

and other types of metadata is crucial in building a powerful predictive network.

28



Let us assume that our dependent variable is movie rating. The number of times a

user paused the movie, which is considered interaction metadata, can be related to

the movie rating. Furthermore, the number of times a user paused the movie can

also be influenced by the genre of the movie, or the length of the movie. In essence

this shows that there could be relationships between the movie metadata and the

interaction metadata.

3.1 Technical solution

Our goal is to design a neural network architecture that uses three types of data:

user metadata, item metadata, and user-item interaction metadata during the model

training stage, but can make predictions when only user and item metadata, but not

user-item interaction metadata is available. To achieve this effect, our solution uses

two neural network architectures, depicted respectively in Figures 3.1. and 3.2. The

first neural network architecture ,Figure 3.1, is employed during the training stage.

The second neural network architecture, Figure 3.2, is a subset of the first that uses

only user and item metadata to make predictions. The key feature of this network

is that some of the weights in the first layer of the network depend on the user-item

interaction inputs in the training network - and thus, user-item interaction metadata

influences the prediction network. The detailed description of the two architectures

is below.

Figure 3.1 is a visual representation depicting a method that can perform the

aforementioned training and testing with different amounts of input features. Since

we have three different types of data (User metadata, item metadata, and interaction

metadata), we propose a network that consists of three individual sections. Each

section takes two of the three possible data types and creates a prediction on the

third. As we can see the user data is denoted in red, item data in blue, and interaction
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data in yellow. The light brown circle denotes the dependent variable that needs to be

predicted. This variable is part of the interaction metadata. Each section is trained

concurrently in a specific manner that will be described in the next few paragraphs.

Figure 3.1: Training network

In Figure 3.2 we can see how the network would look like for prediction on in-

teraction metadata. As shown, only user metadata and item metadata is used as

the model input. An explanation of how the unique properties of our model training

procedure incorporate the knowledge of prior relationships between the three types

of metadata is in the next few paragraphs.

Figure 3.2: Prediction network (need to implement this)
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The first step of each section in Figure 3.1 is to concatenate the two data-types into

one vector/matrix that will be propagated through the network. This propagation is

depicted in Figure 3.1 with the colored dotted lines indicating that a copy of each type

of the data is used in two sections of the network. For the interaction metadata, we

only include the independent variables for training and we predict the independent

variables along with the dependent variable. The reason for this is that we want

to identify the relationships between the interaction metadata and other types of

metadata without biasing the results of prediction. The concatenated matrix is then

sent into independent fully-connected layers L1, L2, or L3 respectively as shown in

Figure 3.1. An important consideration to make for the usage of this network is that

layers L1, L2, and L3 must be the same size. That is to say that they consist of the

same number of neurons. This is because of a non-intuitive training step that takes

place, which will be discussed in the next few paragraphs. After the data is sent to

these fully-connected layers, the consecutive layers, defined by M1, M2, and M3 can

be different for each subsection of the network. Finally the output of each subsection

in the network is the third data-type that was not trained on in that subsection.

At the topmost section of the network in Figure 3.1, the output is the interaction

metadata, while the input, shown by the dotted line, is the user metadata and item

metadata. No interaction metadata is directly used in training this section of the

network. We propose a intermediary step, inspired by convolution, after a user-

defined number of batches has been trained on for each of the three subsections of

the network.
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Figure 3.3: Training batch convolution

Figure 3.3 shows our approach to adjusting the weights in the first layer of each

component of the network through a simple example involving the first neuron of

L1 and L2. Once a user-defined number of batches of data has been sent through

the network in a training loop ending with back-propagation, each of the weights

in the first layer are convolved with their mirrored version in the other subsections

of the network. In the figure we can see two rows, where the first row is from the

network involving L1, which is used to predict interaction metadata and L2 which

is used to predict item metadata. Note that both of these sections involve user

metadata as their features. In this example we are concerned with updating the

weights associated with the user metadata features in the first neuron only. W1,(U)

represents the weights associated with the first subsection for the user metadata

features, while W2,(U) represents the weights associated with the second subsection

for the user metadata features. We convolve these two sets of weights by multiplying

them by a predefined constant, P and adding the two sets of weights, element-wise. P

represents a weighting factor for how much to weight the original weights in the neuron

in comparison to the ones in from the other section of the network. Although the
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example of this is only for a single neuron and single data-type, the same operations

are used to update the weights for the other data-types and other neurons. The

general formula can be written as:

WUpdatedLayer = P ·WConvolvingLayer + (1− P ) ·WOriginalLayer (3.1)

All of the weights are updated using this method, where the original layer weights

and convolved layer weights are combined using a weighted average, similar to how

generic convolution works.

In the manner described in the previous paragraphs we have a network that in-

corporates the weights from subsections of it that do use interaction metadata in the

network that does not. This allows us to teach the network relationships involving

interaction metadata for predictions only using user metadata and item metadata.
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Chapter 4

IMPLEMENTATION

We implemented the network described in Chapter 3 using Tensorflow [2] in

Python. While Chapter 3 described the training architecture, shown in Figure 3.1,

as a single network, we chose to implement it as three separate neural networks ”con-

nected” to each other via explicit weight transfer for the first layer. Figure 4.1 shows

visually how this looks like.

Figure 4.1: Network class

The network class is a wrapper python class for the three independent networks,

which allows a user to easily interact with all three models. The independent models
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def __init__(

self,

shapes,

optimizers=[Adam(), Adam(), Adam()],

losses=[’mse’,’mse’,’mse’],

metrics=[[’mse’],[’mse’],[’mse’]],

xy_layers=[],

xz_layers=[],

yz_layers=[],

num_nodes = 25,

w=[0.5,0.5]

):

Figure 4.2: Caption

are shown as green rectangles where they each contain a first layer and layers two

through n. The first layer of each network is separated visually to show that each

model is connected through it, as shown by the arrows connecting them. This con-

nection exists to perform the convolution step defined in the previous section. The

rest of the networks can be defined as specified by the user.

Each separate model combines, as independent variables (inputs) features of two of

our three types, and is used to predict the feature or features of the third type. Recall,

that the input data to our models is split into three groups: user data, item data,

and interaction data.Let X= x1, ...xk denote all user metadata, Y= y1, ..., Ym denote

all item metadata, and Z = z1, ..., zp denote all interaction data, where z1, ..zp−1 are

the independent variables and zp is the dependent variable. From this we can define

Model 1 from 4.1 as being the network that uses X and Y to predict Z, Model 2 uses

Y and Z to predict X, and Model 3 uses X and Z to predict Y.

The parameters to the network class are shown below:

• shapes: A list with three values depicting the number of features in the user

metadata, item metadata, and interaction metadata respectively.
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• optimizers: The optimizers to use for each network (defaulted to Adam [19]

for all three).

• losses: The loss functions that each network should use for training (defaulted

to MSE [29] for all three)

• metrics: The metrics to show while training the networks (defaulted to MSE).

• xy-layers: A list of tensorflow-keras layer objects that are used for building

the XY-Z model (Model 1).

• xz-layers: A list of tensorflow-keras layer objects that are used for building the

XZ-Y model (Model 2).

• yz-layers: A list of tensorflow-keras layer objects that are used for building the

YZ-X model (Model 3).

• num-nodes: This represents the number of nodes to include in each of the

networks first layer, since they must all be equal for our implementation.

• weights: The weighting percentage of the original weights to the new weights

when convolving as described in the methodology section. This is described in

Equation 3.1

• shuffle train: Whether or not to shuffle the order of the training networks.

With these parameters a user can customize their network as they see fit for their

specific use case.

Due to the nature of the network, a user will likely want to retrieve the individual

models and perform inference on a test set of data to evaluate the performance. For

this reason, three functions have been created to support the user that retrieve the

respective a tensorflow model for the user.
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funcs = [

[self._convolve_model_3, 3],

[self._convolve_model_2, 2],

[self._convolve_model_1, 1],

]

if epoch == total_epochs - 1:

funcs = [

[self._convolve_model_3, 3],

[self._convolve_model_2, 2],

]

if self.shuffle_train is True:

random.shuffle(funcs)

for func, num in funcs:

if num == 3:

loss1, acc1 = self.model_m3.train_on_batch([batches_X[batch],

batches_Z[batch]], batches_Y[batch])

if num == 2:

loss2, acc2 = self.model_m2.train_on_batch([batches_Y[batch],

batches_Z[batch]], batches_X[batch])

if num == 1:

loss3, acc3 = self.model_m1.train_on_batch([batches_X[batch],

batches_Y[batch]], batches_Z[batch][:,-1])

func(batch, batches_X, batches_Y, batches_Z)

if epoch == total_epochs - 1:

loss3, acc3 = self.model_m1.train_on_batch([batches_X[batch],

batches_Y[batch]], batches_Z[batch][:,-1])

self._convolve_model_1(batch, batches_X, batches_Y, batches_Z)

Figure 4.3: Code used for convolving weights
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get-modelZ() Returns the model that uses X,Y to predict Z
get-modelX() Returns the model that uses Y, Z to predict X
get-modelY() Returns the model that uses X, Z to predict Y.

Table 4.1: Sub-model API

In order to convolve the weights across the three sub-networks, training is done

at a batch level across all three networks. The steps are as follows. First the three

networks are trained on a batch of data. After this, the network weights are convolved

as shown in Figure 3.3. An important consideration is that the order of convolving

can happen in a predefined manner or in a random manner. A predefined order could

be M1,M3,M2. Here, the weights from model one are convolved onto models three

and two, and then the weights from model three are convolved onto model one and

two. Lastly, a similar operation occurs for model 2. If this step is to be random, then

after each batch, a random ordering of convolving takes place of which (M1,M2,M3),

(M1,M3,M2), and (M2,M1,M3) are a few of the possible choices. This step is shown

in more detail in Figure 4.3:

The weights are convolved using randomness because if there was a rigid order

the model that is convolved first every time would never end the training batch with

trained weights, only flipped weights. This process creates instability in the model at

times after batches due to the randomness. To counteract the instability, and make

sure the dependent variable network is properly trained, in the last epoch, training

occurs in the order of M3,M2,M1 or M2,M3,M1.

We produced two variants of the network implementation. In the first variant, the

network M1 had only the dependent variable zp as the target. In the second variant,

all interaction metadata, Z, was used as target variables in M1. Chapter 5 discusses

the comparison between these two variants, and Chapter 6 documents the results of

this comparison.
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Chapter 5

EVALUATION

This chapter describes the results of the experiments in Chapter 5. Section 5.1

discusses the research questions investigated, Section 5.2 discusses the experimental

design, and Section 5.3 discusses the measures collected and the results.

5.1 Research questions

To properly evaluate the proposed network, we propose a set of research questions

that we aim to answer. We first need to define two models:

M.1. Model 1: A model in which all of the interaction metadata is predicted on

(dependent and independent variables) as shown in Figure 3.1

M.2. Model 2: A model in which only the dependent variable is predicted on as

shown in Figure 5.1

Recall, that the dependent variable is whether or not a legislator voted with their

party on the bill.

39



Figure 5.1: Dependent variable network

Using these two definitions we can specify research questions.

1. Which sets of parameters produce the best results for Model 1 and Model 2?

(a) We can generate the best set of parameters for each Model.

(b) We can compare models in performance and architecture.

2. Does Model 1 and Model 2 perform better than a baseline network using item

metadata and user metadata to predict interaction metadata.

5.2 Experimental design

As described in Section 5.1, we are investigating two different research questions.

These two questions are defined in more detail below and an explanation of how they

are performed is described. Model 1 and Model 2 are used as defined by M.1. and

M.2. respectively.
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5.2.1 Parameter search

Model 1 and Model 2 are both neural networks and thus they require to be tuned to

have strong predictive results. In order to properly evaluate the network and find the

best parameters we test many different sets of parameters to evaluate how individual

changes affect the network as a whole. For example, in order to test different sizes

of layers in the network, we must keep the batch size, convolution operation, and

the rest of the parameters constant. We use an F-1 score, precision, recall, and

accuracy in these experiments to evaluate the performance of the model with changes

to the parameters [36]. These metrics are quite commonly used when dealing with a

categorical dependent variable.

In terms of the dependent variable we are using, whether or not the legislator

voted with their party, accuracy is simply a measure of how often the model correctly

predicts the result. Interpretations of precision and recall in terms of our dependent

variable are included as well in equation 5.2 and 5.3 respectively.

Accuracy =
Number of correctly predicted classes

Total number of predictions made
(5.1)

• True Positive = Number of legislators predicted to vote with party and actu-

ally did.

• False Positive = Number of legislators predicted to vote with party but did

not.

• False Negative = Number of legislators predicted to not vote with party but

did.

Precision =
True Positive

True Positive + False Positive
(5.2)
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Recall =
True Positive

True Positive + False Negative
(5.3)

F-1 Score = 2
Precision ·Recall
Precision+Recall

(5.4)

These metrics are evaluated across many different model variations that vary with

respect to their parameters. The parameters being tested are, number of layers, layer

sizes, initial layer size, weighted convolution, convolution frequency, batch size, learn-

ing rate, and optimizers. The experiments fix the rest of the parameters except for

the ones being tested. Some of the parameters being tested are fairly intuitive but

weighted convolution and convolution frequency are specific to this network design.

Different weighting schemas can be used in the convolution such as 50/50, or 60/40

that allow a given sub-model to keep some of it’s original information while incorpo-

rating the new information. This process refers to the formula described in 3.1.

Convolution frequency is the idea of convolving only every set number of batches.

This might be beneficial in allowing the network to learn its primary task using its

own weights from a few batches before convolving weights onto it. In essence, this

can allow the network to calibrate the effects of convolving weights.

Furthermore, since Model 1 predicts on all of the interaction metadata, an MSE

loss is used. The quantitative prediction for the dependent variable is then trans-

formed into a binary (0 or 1) prediction for the dependent variable, which is inherently

qualitative. In order to compare Model 1 and Model 2 a similar mechanism is built

for Model 2 but since Model 2 only predicts the dependent variable, a categorical loss

function is also used. This loss function is Binary Cross-Entropy, which is a standard

loss function used for a binary prediction problem [9].
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The data that is fed into the network is normalized into a 0-1 scale. What is

atypical about this network design is that we are predicting each type of metadata

from the other two types. That is to say we need to include both the normalized data

set and the un-normalized set because we want the network to use the normalized data

to predict the un-normalized metadata. For example, we can examine the part of the

model that uses user metadata and item metadata to predict interaction metadata.

In this case user metadata and item metadata is normalized but interaction metadata

is not. In another section of the model the interaction metadata may be normalized

but one of the other two types is not since it is being predicted.

5.2.2 Baseline Comparison

In order to compare the network to a baseline, a simple feed-forward network

using user metadata and item metadata is used to predict the interaction metadata

as mentioned in Section 5.1. The network is shown in Figure 5.2.

Figure 5.2: Baseline network

The arrows shown in Figure 5.2 can be thought of as neural network hidden layers

that are used to predict the dependent variable.
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A similar process to Model 2 occurs with the baseline model, where we examine

using both an MSE loss and Binary Cross Entropy loss in order to compare to Model

1.
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Chapter 6

RESULTS

When comparing Model 1 (M.1.) and Model 2 (M.2.) with their best performing

models, Model 2 outperforms Model 1 across the board with many different iterations

of models examined.

This chapter addresses the results of the experiments introduced in Chapter 5.

Section 6.1 shows the results of the parameter searches related to Model 1 and Model

2. Section 6.2 performs a similar parameter search for a baseline model which is then

compared to the performance of Model’s 1 and 2 in Section 6.3.

6.1 Parameter search

We ran a grid search for all of the proposed models in order to identify the best

performing one with respect to accuracy, F-1 score, precision, and recall. Section

6.1.1 describes this process for Model 1, and Section 6.1.2 describes a similar analysis

for Model 2.

6.1.1 Model 1: All interaction metadata

For Model 1 experiments could only be done using MSE, which is then transformed

into categories during inference. This is due to the fact that we are predicting all of

the interaction metadata at once and thus we treated the dependent variable as if it

was quantitative.

If a quantitative prediction is greater than 1 we replace it with a 1, that the

legislator voted with their party on the given bill. Also, if the prediction is less than

zero we replace it with a zero, that the legislator did not vote with their party on
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the given bill. Finally, for predictions between zero and one, a simple rounding takes

place where values greater than 0.5 are set to one and values less than 0.5 are set to

zero.

The model was shown to be quite unstable throughout the grid search with the

MSE loss fluctuating between large numbers. Figure 6.2 shows the training loss

through the batches. Note, that this loss is for all of the interaction metadata but we

would expect this to be much lower than it is.

Figure 6.1: MSE loss across batches for Model 1: Best Model

A table depicting the metrics for the best model is shown below in Table 6.1.

Metric Value

Accuracy .667
Precision .789
Recall .664
F-1 Score .72

Table 6.1: Evaluation metrics for Model 1
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Predicted
Not with party With party

T
ru

e Not with party 6,496 3,142
With party 5,968 11,786

Table 6.2: Confusion matrix for Model 1

xy_layers: [keras.layers.Dense(256, activation=’relu’),

keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

xy_layers: [keras.layers.Dense(256, activation=’relu’),

keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

yz_layers: [keras.layers.Dense(256, activation=’relu’),

keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

num_nodes: 512

w: [0.3,0.7]

batch size: 64

epochs = 8

Shown above in Figure 6.2 and Table 6.1 we can see that the model does a decent

job on predicting whether someone actually voted with the party but it does not do

too well at predicting whether someone did not vote with their party. Furthermore

this model was quite unstable through its training process across many of the other

iterations of models attempted using all of the predictors. The weights parameter

chosen is [0.3, 0.7] which means less of the original weights is being used after each

convolution step than the convolved weights.

6.1.2 Model 2

Model 2, the model that does not predict on the entirety of the interaction meta-

data but only on the dependent variable, showed better results than Model 1. Also,

since we are only predicting the dependent variable, we were able to treat it as as a
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categorical variable as well as a quantitative one to compare to the results of Model

1.

6.1.2.1 Quantitative dependent variable

:

Although fluctuations do occur across the loss curves for this Model, the loss

curves do appear to be much more stable than the ones shown for Model 1.

Figure 6.2: MSE loss across batches for Model 2: Best Model

As shown, the loss curve does appear to fluctuate around .05 and .2 which is

expected with our network design where the weights are being convolved. This fluc-

tuation is a positive visual because it means that the network is quickly calibrating

itself after each convolution takes place because if it wasn’t then we would see very

large jumps in loss randomly throughout the training process.

A table depicting the metrics for the best model is shown below in Table 6.3.
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Metric Value

Accuracy .68
Precision .747
Recall .765
F-1 Score .756

Table 6.3: Evaluation metrics for Model 2: Quantitative

Predicted
Not with party With party

T
ru

e Not with party 5,045 4,593
With party 4,170 13,584

Table 6.4: Confusion matrix for Model 2: Quantitative

The best parameters for the model are fairly systematic across the research ques-

tions, with minor differences in the weights parameter and the number of nodes per

layer.

xy_layers: [keras.layers.Dense(256, activation=’relu’),

keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

xy_layers: [keras.layers.Dense(256, activation=’relu’),

keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

yz_layers: [keras.layers.Dense(256, activation=’relu’),

keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

num_nodes: 512

w: [0.7,0.3]

batch size: 64

epochs = 5

It seems as though weighting the original weights as .7 and the convolved weights as

0.3 performed the best. This shows that a smaller percentage of the information in

the new weights is imputed into the original weights. This is the opposite weight-
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ing schema from Model 1 which does not show a clear trend in how the weighting

parameter should be set for optimal performance.

6.1.2.2 Categorical dependent variable

: As stated previously, since Model 2 predicts only on the dependent variable, we

are able to use a categorical approach as well.

Figure 6.3: Binary Cross-entropy loss across batches for Model 2: Best
Model

Figure 6.3 shows the loss of the model as it goes through the training process.

Here we can also see the fluctuations in loss that are hovering around .1 and .5, which

is how the model is convolving the weights throughout the training.

Metric Value

Accuracy .912
Precision .918
Recall .950
F-1 Score .933

Table 6.5: Evaluation metrics for Model 2: Categorical
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Predicted
Not with party With party

T
ru

e Not with party 8,128 1,510
With party 901 16,853

Table 6.6: Confusion matrix for Model 2: Categorical

The parameters for the model are shown below.

xy_layers: [keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

xy_layers: [keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

yz_layers: [keras.layers.Dense(128, activation=’relu’),

keras.layers.Dense(64, activation=’relu’),

keras.layers.Dense(32, activation=’relu’)]

num_nodes: 256

w: [0.7,0.3]

batch size: 64

epochs = 8

The results of this model are quite good, with accuracy over .91 and a high F-1

score this model is able to separate legislators who voted with their party and who

didn’t, quite well. Although, out of all the legislators who did not vote with their

party, this model predicts around 14 percent of them to have voted with their party.

6.2 Baseline Comparison

In the baseline comparison we make a simple XY −→ Z network that we build

using keras. This represents almost the exact network implemented in the convolved

model but without the convolution taking place. Since this network is only predicting

the dependent variable, we are able to test both an MSE loss and a BinaryCrossEn-

tropy loss to create a valid comparison to Model 1 and Model 2.
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6.2.1 Categorical dependent variable

: This model seems to do quite well with respect to using a categorical dependent

variable.

Predicted
Not with party With party

T
ru

e Not with party 8,325 1,313
With party 982 16,772

Table 6.7: Confusion Matrix for Baseline Model: Categorical

This model required 10 epochs to converge which is a bit higher than some of the

others that we have tested earlier. The others needed around 8 epochs.

Metric Value

Accuracy .916
Precision .927
Recall .944
F-1 Score .936

Table 6.8: Evaluation metrics for Baseline Model: Categorical

The parameters for the model:

A1_in = keras.layers.Dense(512, activation = ’relu’)(XY)

A1_in = keras.layers.Dense(256, activation = ’relu’)(A1_in)

A1_in = keras.layers.Dense(128, activation = ’relu’)(A1_in)

A1_in = keras.layers.Dense(64, activation = ’relu’)(A1_in)

out_m1 = keras.layers.Dense(1, activation=’sigmoid’)(A1_in)

Once again this model is very similar to the other ones chosen in terms of layer

size. The results are quite strong in terms of accuracy (.915) and a high F-1 score

(.936) which means this model is also good at separating the binary class of whether

or not a legislator voted with their party.
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6.2.2 Quantitative dependent variable

:

An MSE loss function was also used on the baseline in order to be able to compare

its performance to Model 1. The same mechanism of transforming predictions into

binary classes was used as in previous expirements.

Predicted
Not with party With party

T
ru

e Not with party 8,357 1,281
With party 1057 16,697

Table 6.9: Confusion Matrix for Model 2: Quantitative

Metric Value

Accuracy .914
Precision .928
Recall .940
F-1 Score .934

Table 6.10: Evaluation metrics for Baseline Model: Quantitative

The parameters for the model:

A1_in = keras.layers.Dense(512, activation = ’relu’)(XY)

A1_in = keras.layers.Dense(256, activation = ’relu’)(A1_in)

A1_in = keras.layers.Dense(128, activation = ’relu’)(A1_in)

A1_in = keras.layers.Dense(64, activation = ’relu’)(A1_in)

out_m1 = keras.layers.Dense(1, activation=None)(A1_in)

Looking at the previous experiments, this model is very similar to the ones chosen

there. The performance is quite high, similarly to the categorical predictor for the

baseline model.
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6.2.3 Additional Experiment

After we performed these experiments we felt like there was still one additional

test we could perform. Due to the high accuracy of the baseline model, we hypothesize

that the structure of the problem that we are trying to solve is too simple. In order to

make the task more difficult for the model, we decide to compare the best performing

model to the baseline without including the party affiliations variable. These two

models are Model 2 with a binary cross entropy loss and the baseline model with a

binary cross entropy loss. The reason for this, is because party affiliation is one of

the most important features when it comes to predicting how a legislator will vote on

a bill. Removing this variable will result in a more difficult classification task for the

model.

The results of our experiments are shown below:

Metric Value

Accuracy .912
Precision .924
Recall .930
F-1 Score .927

Table 6.11: Evaluation metrics for Baseline Model: (No party affiliation)

Metric Value

Accuracy .913
Precision .918
Recall .950
F-1 Score .934

Table 6.12: Evaluation metrics for Single Predictor Model: (No party
affiliation)
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Looking at Table 6.11 and Table 6.12 it is clear that we get fairly similar results to

the previous models. It appears that both models are able to use the other features

quite well in order to produce accurate predictions.

6.3 Model Comparison

In order to compare the models, the results are displayed below in a table similar

to the ones for each model.

Model loss Accuracy Precision Recall F-1
Score

Model 1 MSE .667 .789 .664 .72
Model 2 MSE .68 .747 .765 .756
Model 2 BCE .912 .918 .950 .933
Baseline BCE .916 .927 .944 .936
Baseline MSE .914 .928 .940 .934

Table 6.13: Comparison of Accuracy, Precision, Recall, and F-1 score for
our models.

Overall when comparing Model 1 and Model 2 it is quite clear that Model 2

performed better than Model 1 as shown in Table 6.13. The way the network trained

showed that there were much more fluctuations in the loss for the network that

predicted on all the interaction metadata as supposed to the network that didn’t.

This phenomenon is shown in Figures 6.2 and 6.2 Furthermore the fact that Model 2

was able to train using a binary loss function shows that it is most likely the better

choice because it allows for more variability in parameterization because the network

only predicts on one variable.

Comparing Model 1 and Model 2 to the baseline network shows that Model 2 has

the same predictive power as the baseline, while Model 1 performs worse. The baseline

network achieved accuracy measurements of .916 and Model 2 achieved accuracy

measurements of around .912 which shows no significant difference. The differences
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in the MSE models were not significant either (Model 1 : .667 accuracy, Model 2:

.68 accuracy) but not entirely interesting to inspect because the categorical predictor

model outperformed the MSE model. We also can see that the errors are distributed

in a roughly balanced way across the experiments, which is why precision and recall

numbers are relatively close across the exercises. Furthermore, our experiment which

removes party affiliation from the user metadata showed no difference in accuracy for

the highest performing models.

With this information there is no clear difference between Model 2 and the baseline

but both the baseline and Model 2 highly outperformed Model 1.
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Chapter 7

CONCLUSION/FUTURE WORK

In our work we proposed and implemented a set of neural network architectures

designed to take advantage of information available in the training set, but not avail-

able in test test data. Specifically, the inclusion of interaction data between users

and items during training of the model. We see many potential applications of our

methodology in the field of recommender systems ranging from movie streaming plat-

forms to online shopping websites. The number of companies that need powerful

recommendation engines is immense and the problem of building one is a difficult

one.

Due to lack of appropriate publicly available recommender system datasets, we

conducted our test study on a dataset from the Digital Democracy project in which

we tried to predict the votes of the legislators on bills based on the information about

the legislators, the bills, and the legislator interactions with prior bills. Our results

show that our methods allow for accurate prediction in this dataset. At the same

time, our approach was not able to provide a lift over a baseline neural network.

We believe that in part, this is because the nature of the dataset makes predictions

relatively easy (lawmaker’s party affiliation is a solid predictor all by itself in many

cases). In order to try and use our dataset but still account for this problem, we try

removing party affiliation from the legislature features. This results in very similar

accuracies for our models. As such, our approach requires additional validation.

Further model variations can also be examined. Convolving the weights in dif-

ferent layers down the network or changing the frequency of convolutions could be

the study of future work as well. Future work involves finding/constructing mul-
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tiple datasets that are appropriate for our proposed models and evaluating further

variations of our models that build off of the ideas of COLANDER.
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