6,417 research outputs found

    Interference estimation in an aeronautical ad hoc network

    Get PDF
    Recent research have considered aeronautical ad hoc networks as a possible mean for future aeronautical communications. By introducing inter- aircraft links, they are supposed to become an alternative to existing solutions based on direct air- ground or satellite links. In this paper, we propose the use of asynchronous Code Division Multiple Access (CDMA) in aeronautical ad hoc networks. We then present a simulation model developed with OPNET Modeler that estimates the impact of Multiple Access Interference (MAI) on packets delivery. Finally, we give the results of some simulations made with an ATC/AOC traffic model, and with real aircraft positions over the French sky

    Access and Routing in Aeronautical Ad-hoc Networks

    Get PDF
    National audienceAeronautical Ad hoc NETworks (AANET) have been proposed in previous studies as an alternative to cellular or satellite transmissions for “datalink” communications between commercial aviation aircraft in flight and air traffic services on the ground. After an introduction on the specificities of civil aviation communications, we present the channel access and routing challenges for AANETs. We finally propose an innovative communication architecture for AANETs

    Performance Assessment of a New Routing Protocol in AANET

    Get PDF
    Routing is a critical issue in mobile ad hoc networks. The routing algorithm must take into account the specific properties of the network such as its topology, the mobility of the nodes and their number. In this paper, we present a simulation-based study of the performances of our innovative routing protocol named NoDe-TBR (Node Density TBR) that takes into account the actual node density distribution. The considered ad hoc network is an Aeronautical Ad hoc NETwork (AANET), a future communication system enabling air↔air and air↔ground communications beyond the radio range of the sender. This context and the communication architecture have been modeled in a realistic way based on replayed aircraft trajectories, a realistic access layer, and application that should be deployed in the future

    Degree Distribution of Arbitrary AANET

    Get PDF
    Taking the safe distance between two adjacent planes in the same airline into account, we give a model for the multiairline aeronautical ad hoc network (AANET). Based on our model, we analyze the plane’s degree distribution of any arbitrary AANET. Then, the expressions of the degree distributions of one single plane and the whole networks are both worked out and verified by the simulations, in which we generate several random AANETs. Since our model is a reasonable abstraction of the real situation, the theoretical result we get is very close to the result of the real networks, which is also shown in the simulations

    On the Delay of Reactive-Greedy-Reactive Routing in Unmanned Aeronautical Ad-hoc Networks

    Get PDF
    AbstractReactive-Greedy-Reactive (RGR) has been proposed as a promising routing protocol in highly mobile density-variable Unmanned Aeronautical Ad-hoc Networks (UAANETs). In RGR, location information of Unmanned Aerial Vehicles (UAVs) as well as reactive end-to-end paths are employed in the routing process. It had already been shown that RGR outperforms existing routing protocols in terms of packet delivery ratio. In this paper, the delay performance of RGR is evaluated and compared against Ad-hoc On-demand Distance Vector (AODV) and Greedy Geographic Forwarding (GGF).We considerextensive simulation scenariostocover both searchingand tracking applicationsofUAANETs. The results illustrate that when the number of UAVs is high enough in a searching mission to form a connected UAANET, RGR performs well. In sparsely connected searching scenarios or dense tracking scenarios, RGR may also slightly decrease delay compared to traditional reactive routing protocols for similar PDR

    Assessment of real-time data transmission via ad-hoc communication networks in the North Atlantic oceanic airspace

    Get PDF
    Data link based real-time data transmission for air traffic services and aeronautical operational control provides for safe, efficient and timely exchange of information between aircraft and ground entities within the current air transportation system. This enables procedures and process optimization for air traffic service and airline operational control. Currently, the air transport system relies on direct line-of-sight data link in continental airspace and communication via satellite or high frequency data link in oceanic, remote or polar airspace. Future communication technology intends to additionally allow for indirect air-to-ground communication via aeronautical ad-hoc networks using aircraft as network nodes. This approach bears a high potential to increase airspace capacity and efficiency for congested airspaces with little ground infrastructure as it is the case e.g. for the North Atlantic oceanic airspace. While the assessment of operational benefits for conventional line-ofsight or satellite-based data link technologies can be based on the experience made with existing technologies, the assessment of aeronautical ad-hoc networks needs careful consideration of the particular air traffic situation as well as of the specific aeronautical communication demand. In our work we present a method to combine air traffic and connectivity simulations with an aeronautical data traffic demand model for the North Atlantic oceanic airspace. As a result, the coverage of aeronautical data traffic demand by an aeronautical adhoc network enabled by the new technology, will be estimated for various scenarios for the North Atlantic oceanic airspace. Dependencies on the equipage fraction and on the air-to-air radio range will be analyzed. Also, expected application data rates at aircraft exchanging the data communication of the airborne network with ground entities, will be assessed on a simplified basis. The results are suited to serve as a technical guidance for further scaling and definition of the underlying air-to-air data link technology

    Improving routing in networks of Unmanned Aerial Vehicles: Reactive-Greedy-Reactive

    Get PDF
    Because of their specific characteristics, Unmanned Aeronautical Ad-hoc Networks (UAANETs) can be classified as a special kind of mobile ad hoc networks. Because of the high mobility of Unmanned Aerial Vehicles, designing a good routing protocol for UAANETs is challenging. Here, we present a new protocol called Reactive-Greedy-Reactive (RGR) as a promising routing protocol in high mobility and density-variable scenarios. RGR combines features of reactive MANET routing protocols such as Ad-hoc On-demand Distance Vector with geographic routing protocols, exploiting the unique characteristics of UAANETs. In addition to combining reactive and geographic routing, the protocol has a number of features to further improve the overall performance. We present the rationale and design of the protocol, discuss the specific performance improvements in detail and provide extensive simulation results that demonstrate that RGR outperforms purely reactive or geographic routing protocols. The results also demonstrate the impact of the various protocol modifications

    Multiple-Objective Packet Routing Optimization for Aeronautical ad-hoc Networks

    Get PDF
    Providing Internet service above the clouds is of ever-increasing interest and in this context aeronautical ad-hoc networking (AANET) constitutes a promising solution. However, the optimization of packet routing in large ad hoc networks is quite challenging. In this paper, we develop a discrete ε multiobjective genetic algorithm (ε-DMOGA) for jointly optimizing the end-to-end latency, the end-to-end spectral efficiency (SE), and the path expiration time (PET) that specifies how long the routing path can be relied on without re-optimizing the path. More specifically, a distance-based adaptive coding and modulation (ACM) scheme specifically designed for aeronautical communications is exploited for quantifying each link’s achievable SE. Furthermore, the queueing delay at each node is also incorporated into the multiple-objective optimization metric. Our ε-DMOGA assisted multiple-objective routing optimization is validated by real historical flight data collected over the Australian airspace on two selected representative dates

    NEWSKY - A concept for NEtWorking the SKY for civil aeronautical communications

    Get PDF
    In this paper, an overview of the NEWSKY project is given. This project is funded by the European Commission within the 6th framework program and will start in January 2007. The NEWSKY project is a feasibility study to clarify if it is possible to establish a heterogeneous network for aeronautical communications which is capable to integrate different communications systems as well as different applications into a single global aeronautical network. The envisaged applications comprise not only air-traffic control and management but also airline and passenger communications
    • …
    corecore