1,035 research outputs found

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Support vector machines for interval discriminant analysis

    Get PDF
    The use of data represented by intervals can be caused by imprecision in the input information, incompleteness in patterns, discretization procedures, prior knowledge insertion or speed-up learning. All the existing support vector machine (SVM) approaches working on interval data use local kernels based on a certain distance between intervals, either by combining the interval distance with a kernel or by explicitly defining an interval kernel. This article introduces a new procedure for the linearly separable case, derived from convex optimization theory, inserting information directly into the standard SVM in the form of intervals, without taking any particular distance into consideration.Ministerio de Educación y Ciencia DPI2006-15630- C02-0

    Unleashing the Power of VGG16: Advancements in Facial Emotion Recognization

    Get PDF
    In facial emotion detection, researchers are actively exploring effective methods to identify and understand facial expressions. This study introduces a novel mechanism for emotion identification using diverse facial photos captured under varying lighting conditions. A meticulously pre-processed dataset ensures data consistency and quality. Leveraging deep learning architectures, the study utilizes feature extraction techniques to capture subtle emotive cues and build an emotion classification model using convolutional neural networks (CNNs). The proposed methodology achieves an impressive 97% accuracy on the validation set, outperforming previous methods in terms of accuracy and robustness. Challenges such as lighting variations, head posture, and occlusions are acknowledged, and multimodal approaches incorporating additional modalities like auditory or physiological data are suggested for further improvement. The outcomes of this research have wide-ranging implications for affective computing, human-computer interaction, and mental health diagnosis, advancing the field of facial emotion identification and paving the way for sophisticated technology capable of understanding and responding to human emotions across diverse domains
    corecore