10,984 research outputs found

    An Adversarial Super-Resolution Remedy for Radar Design Trade-offs

    Full text link
    Radar is of vital importance in many fields, such as autonomous driving, safety and surveillance applications. However, it suffers from stringent constraints on its design parametrization leading to multiple trade-offs. For example, the bandwidth in FMCW radars is inversely proportional with both the maximum unambiguous range and range resolution. In this work, we introduce a new method for circumventing radar design trade-offs. We propose the use of recent advances in computer vision, more specifically generative adversarial networks (GANs), to enhance low-resolution radar acquisitions into higher resolution counterparts while maintaining the advantages of the low-resolution parametrization. The capability of the proposed method was evaluated on the velocity resolution and range-azimuth trade-offs in micro-Doppler signatures and FMCW uniform linear array (ULA) radars, respectively.Comment: Accepted in EUSIPCO 2019, 5 page

    FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors

    Full text link
    Face Super-Resolution (SR) is a domain-specific super-resolution problem. The specific facial prior knowledge could be leveraged for better super-resolving face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes full use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To further generate realistic faces, we propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Moreover, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive benchmark experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively. Code will be made available upon publication.Comment: Chen and Tai contributed equally to this pape

    PerformanceNet: Score-to-Audio Music Generation with Multi-Band Convolutional Residual Network

    Full text link
    Music creation is typically composed of two parts: composing the musical score, and then performing the score with instruments to make sounds. While recent work has made much progress in automatic music generation in the symbolic domain, few attempts have been made to build an AI model that can render realistic music audio from musical scores. Directly synthesizing audio with sound sample libraries often leads to mechanical and deadpan results, since musical scores do not contain performance-level information, such as subtle changes in timing and dynamics. Moreover, while the task may sound like a text-to-speech synthesis problem, there are fundamental differences since music audio has rich polyphonic sounds. To build such an AI performer, we propose in this paper a deep convolutional model that learns in an end-to-end manner the score-to-audio mapping between a symbolic representation of music called the piano rolls and an audio representation of music called the spectrograms. The model consists of two subnets: the ContourNet, which uses a U-Net structure to learn the correspondence between piano rolls and spectrograms and to give an initial result; and the TextureNet, which further uses a multi-band residual network to refine the result by adding the spectral texture of overtones and timbre. We train the model to generate music clips of the violin, cello, and flute, with a dataset of moderate size. We also present the result of a user study that shows our model achieves higher mean opinion score (MOS) in naturalness and emotional expressivity than a WaveNet-based model and two commercial sound libraries. We open our source code at https://github.com/bwang514/PerformanceNetComment: 8 pages, 6 figures, AAAI 2019 camera-ready versio
    • …
    corecore