312 research outputs found

    Inferring Interpersonal Relations in Narrative Summaries

    Full text link
    Characterizing relationships between people is fundamental for the understanding of narratives. In this work, we address the problem of inferring the polarity of relationships between people in narrative summaries. We formulate the problem as a joint structured prediction for each narrative, and present a model that combines evidence from linguistic and semantic features, as well as features based on the structure of the social community in the text. We also provide a clustering-based approach that can exploit regularities in narrative types. e.g., learn an affinity for love-triangles in romantic stories. On a dataset of movie summaries from Wikipedia, our structured models provide more than a 30% error-reduction over a competitive baseline that considers pairs of characters in isolation

    OCT Signal Enhancement with Deep Learning

    Get PDF
    PURPOSE: To establish whether deep learning methods are able to improve the signal-to-noise ratio of time-domain (TD) optical coherence tomography (OCT) images to approach that of spectral-domain (SD) OCT. DESIGN: Method agreement study and progression-detection in a randomized, double-masked, placebo-controlled, multi-centre trial for open-angle glaucoma (OAG) [UK Glaucoma Treatment Study (UKGTS)]. PARTICIPANTS: Cohort for training and validation: 77 stable OAG participants with TDOCT and SDOCT imaging at up to 11 visits within 3 months. Cohort for testing: 284 newly-diagnosed OAG patients with TDOCT from a cohort of 516 recruited at 10 UK centres between 2007 and 2010. METHODS: An ensemble of generative adversarial networks (GANs) was trained on TDOCT and SDOCT image pairs from the training dataset and applied to TDOCT images from the testing dataset. TDOCT were converted to synthesized SDOCT images and segmented via Bayesian fusion on the output of the GANs. MAIN OUTCOME MEASURES: 1) Bland-Altman analysis to assess agreement between TDOCT and synthesized SDOCT average retinal nerve fibre layer thickness (RNFLT) measurements and the SDOCT RNFLT. 2) Analysis of the distribution of the rates of RNFLT change in TDOCT and synthesized SDOCT in the two treatments arms of the UKGTS was compared. A Cox model for predictors of time-to-incident VF progression was computed with the TDOCT and the synthesized SDOCT. RESULTS: The 95% limits of agreement between TDOCT and SDOCT were [26.64, -22.95], between synthesized SDOCT and SDOCT were [8.11, -6.73], and between SDOCT and SDOCT were [4.16, -4.04]. The mean difference in the rate of RNFL change between UKGTS treatment and placebo arms with TDOCT was 0.24 (p=0.11) and with synthesized SDOCT was 0.43 (p=0.0017). The hazard ratio for RNFLT slope in Cox regression modeling for time to incident VF progression was 1.09 (95% CI 1.02 to 1.21) (p=0.035) for TDOCT and 1.24 (95% CI 1.08 to 1.39) (p=0.011) for synthesized SDOCT. CONCLUSIONS: Image enhancement significantly improved the agreement of TDOCT RNFLT measurements with SDOCT RNFLT measurements. The difference, and its significance, in rates of RNFLT change in the UKGTS treatment arms was enhanced and RNFLT change became a stronger predictor of VF progression
    • …
    corecore