3,144 research outputs found

    Stable Memoryless Queuing under Contention

    Get PDF

    Dynamic Packet Scheduling in Wireless Networks

    Full text link
    We consider protocols that serve communication requests arising over time in a wireless network that is subject to interference. Unlike previous approaches, we take the geometry of the network and power control into account, both allowing to increase the network's performance significantly. We introduce a stochastic and an adversarial model to bound the packet injection. Although taken as the primary motivation, this approach is not only suitable for models based on the signal-to-interference-plus-noise ratio (SINR). It also covers virtually all other common interference models, for example the multiple-access channel, the radio-network model, the protocol model, and distance-2 matching. Packet-routing networks allowing each edge or each node to transmit or receive one packet at a time can be modeled as well. Starting from algorithms for the respective scheduling problem with static transmission requests, we build distributed stable protocols. This is more involved than in previous, similar approaches because the algorithms we consider do not necessarily scale linearly when scaling the input instance. We can guarantee a throughput that is as large as the one of the original static algorithm. In particular, for SINR models the competitive ratios of the protocol in comparison to optimal ones in the respective model are between constant and O(log^2 m) for a network of size m.Comment: 23 page

    The complexity of resolving conflicts on MAC

    Full text link
    We consider the fundamental problem of multiple stations competing to transmit on a multiple access channel (MAC). We are given nn stations out of which at most dd are active and intend to transmit a message to other stations using MAC. All stations are assumed to be synchronized according to a time clock. If ll stations node transmit in the same round, then the MAC provides the feedback whether l=0l=0, l=2l=2 (collision occurred) or l=1l=1. When l=1l=1, then a single station is indeed able to successfully transmit a message, which is received by all other nodes. For the above problem the active stations have to schedule their transmissions so that they can singly, transmit their messages on MAC, based only on the feedback received from the MAC in previous round. For the above problem it was shown in [Greenberg, Winograd, {\em A Lower bound on the Time Needed in the Worst Case to Resolve Conflicts Deterministically in Multiple Access Channels}, Journal of ACM 1985] that every deterministic adaptive algorithm should take Ω(d(lgn)/(lgd))\Omega(d (\lg n)/(\lg d)) rounds in the worst case. The fastest known deterministic adaptive algorithm requires O(dlgn)O(d \lg n) rounds. The gap between the upper and lower bound is O(lgd)O(\lg d) round. It is substantial for most values of dd: When d=d = constant and dO(nϵ)d \in O(n^{\epsilon}) (for any constant ϵ1\epsilon \leq 1, the lower bound is respectively O(lgn)O(\lg n) and O(n), which is trivial in both cases. Nevertheless, the above lower bound is interesting indeed when dd \in poly(lgn\lg n). In this work, we present a novel counting argument to prove a tight lower bound of Ω(dlgn)\Omega(d \lg n) rounds for all deterministic, adaptive algorithms, closing this long standing open question.}Comment: Xerox internal report 27th July; 7 page
    corecore