1,586 research outputs found

    Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval

    Full text link
    Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time, formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval. Our code is available at https://github.com/xandery-geek/SAAT

    Efficient Two-Step Adversarial Defense for Deep Neural Networks

    Full text link
    In recent years, deep neural networks have demonstrated outstanding performance in many machine learning tasks. However, researchers have discovered that these state-of-the-art models are vulnerable to adversarial examples: legitimate examples added by small perturbations which are unnoticeable to human eyes. Adversarial training, which augments the training data with adversarial examples during the training process, is a well known defense to improve the robustness of the model against adversarial attacks. However, this robustness is only effective to the same attack method used for adversarial training. Madry et al.(2017) suggest that effectiveness of iterative multi-step adversarial attacks and particularly that projected gradient descent (PGD) may be considered the universal first order adversary and applying the adversarial training with PGD implies resistance against many other first order attacks. However, the computational cost of the adversarial training with PGD and other multi-step adversarial examples is much higher than that of the adversarial training with other simpler attack techniques. In this paper, we show how strong adversarial examples can be generated only at a cost similar to that of two runs of the fast gradient sign method (FGSM), allowing defense against adversarial attacks with a robustness level comparable to that of the adversarial training with multi-step adversarial examples. We empirically demonstrate the effectiveness of the proposed two-step defense approach against different attack methods and its improvements over existing defense strategies.Comment: 12 page

    Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN

    Full text link
    We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network. We alternately train both classifier and generator networks. The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image. Simultaneously, the classifier network is trained to classify correctly both original and adversarial images generated by the generator. These procedures help the classifier network to become more robust to adversarial perturbations. Furthermore, our adversarial training framework efficiently reduces overfitting and outperforms other regularization methods such as Dropout. We applied our method to supervised learning for CIFAR datasets, and experimantal results show that our method significantly lowers the generalization error of the network. To the best of our knowledge, this is the first method which uses GAN to improve supervised learning
    • …
    corecore