8,109 research outputs found

    Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN

    Full text link
    We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network. We alternately train both classifier and generator networks. The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image. Simultaneously, the classifier network is trained to classify correctly both original and adversarial images generated by the generator. These procedures help the classifier network to become more robust to adversarial perturbations. Furthermore, our adversarial training framework efficiently reduces overfitting and outperforms other regularization methods such as Dropout. We applied our method to supervised learning for CIFAR datasets, and experimantal results show that our method significantly lowers the generalization error of the network. To the best of our knowledge, this is the first method which uses GAN to improve supervised learning

    Adversarial Dropout for Supervised and Semi-supervised Learning

    Full text link
    Recently, the training with adversarial examples, which are generated by adding a small but worst-case perturbation on input examples, has been proved to improve generalization performance of neural networks. In contrast to the individually biased inputs to enhance the generality, this paper introduces adversarial dropout, which is a minimal set of dropouts that maximize the divergence between the outputs from the network with the dropouts and the training supervisions. The identified adversarial dropout are used to reconfigure the neural network to train, and we demonstrated that training on the reconfigured sub-network improves the generalization performance of supervised and semi-supervised learning tasks on MNIST and CIFAR-10. We analyzed the trained model to reason the performance improvement, and we found that adversarial dropout increases the sparsity of neural networks more than the standard dropout does.Comment: submitted to AAAI-1

    Regularizing deep networks using efficient layerwise adversarial training

    Full text link
    Adversarial training has been shown to regularize deep neural networks in addition to increasing their robustness to adversarial examples. However, its impact on very deep state of the art networks has not been fully investigated. In this paper, we present an efficient approach to perform adversarial training by perturbing intermediate layer activations and study the use of such perturbations as a regularizer during training. We use these perturbations to train very deep models such as ResNets and show improvement in performance both on adversarial and original test data. Our experiments highlight the benefits of perturbing intermediate layer activations compared to perturbing only the inputs. The results on CIFAR-10 and CIFAR-100 datasets show the merits of the proposed adversarial training approach. Additional results on WideResNets show that our approach provides significant improvement in classification accuracy for a given base model, outperforming dropout and other base models of larger size.Comment: Published at the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18). Official link: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/1663

    Learning Robust Representations of Text

    Full text link
    Deep neural networks have achieved remarkable results across many language processing tasks, however these methods are highly sensitive to noise and adversarial attacks. We present a regularization based method for limiting network sensitivity to its inputs, inspired by ideas from computer vision, thus learning models that are more robust. Empirical evaluation over a range of sentiment datasets with a convolutional neural network shows that, compared to a baseline model and the dropout method, our method achieves superior performance over noisy inputs and out-of-domain data.Comment: 5 pages with 2 pages reference, 2 tables, 1 figur

    Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect

    Full text link
    Despite being impactful on a variety of problems and applications, the generative adversarial nets (GANs) are remarkably difficult to train. This issue is formally analyzed by \cite{arjovsky2017towards}, who also propose an alternative direction to avoid the caveats in the minmax two-player training of GANs. The corresponding algorithm, called Wasserstein GAN (WGAN), hinges on the 1-Lipschitz continuity of the discriminator. In this paper, we propose a novel approach to enforcing the Lipschitz continuity in the training procedure of WGANs. Our approach seamlessly connects WGAN with one of the recent semi-supervised learning methods. As a result, it gives rise to not only better photo-realistic samples than the previous methods but also state-of-the-art semi-supervised learning results. In particular, our approach gives rise to the inception score of more than 5.0 with only 1,000 CIFAR-10 images and is the first that exceeds the accuracy of 90% on the CIFAR-10 dataset using only 4,000 labeled images, to the best of our knowledge.Comment: Accepted as a conference paper in International Conference on Learning Representation(ICLR). Xiang Wei and Boqing Gong contributed equally in this wor
    • …
    corecore