1,467 research outputs found

    Domain adaptive segmentation in volume electron microscopy imaging

    Get PDF
    In the last years, automated segmentation has become a necessary tool for volume electron microscopy (EM) imaging. So far, the best performing techniques have been largely based on fully supervised encoder-decoder CNNs, requiring a substantial amount of annotated images. Domain Adaptation (DA) aims to alleviate the annotation burden by 'adapting' the networks trained on existing groundtruth data (source domain) to work on a different (target) domain with as little additional annotation as possible. Most DA research is focused on the classification task, whereas volume EM segmentation remains rather unexplored. In this work, we extend recently proposed classification DA techniques to an encoder-decoder layout and propose a novel method that adds a reconstruction decoder to the classical encoder-decoder segmentation in order to align source and target encoder features. The method has been validated on the task of segmenting mitochondria in EM volumes. We have performed DA from brain EM images to HeLa cells and from isotropic FIB/SEM volumes to anisotropic TEM volumes. In all cases, the proposed method has outperformed the extended classification DA techniques and the finetuning baseline. An implementation of our work can be found on https://github.com/JorisRoels/domain-adaptive-segmentation

    Sensor-invariant Fingerprint ROI Segmentation Using Recurrent Adversarial Learning

    Full text link
    A fingerprint region of interest (roi) segmentation algorithm is designed to separate the foreground fingerprint from the background noise. All the learning based state-of-the-art fingerprint roi segmentation algorithms proposed in the literature are benchmarked on scenarios when both training and testing databases consist of fingerprint images acquired from the same sensors. However, when testing is conducted on a different sensor, the segmentation performance obtained is often unsatisfactory. As a result, every time a new fingerprint sensor is used for testing, the fingerprint roi segmentation model needs to be re-trained with the fingerprint image acquired from the new sensor and its corresponding manually marked ROI. Manually marking fingerprint ROI is expensive because firstly, it is time consuming and more importantly, requires domain expertise. In order to save the human effort in generating annotations required by state-of-the-art, we propose a fingerprint roi segmentation model which aligns the features of fingerprint images derived from the unseen sensor such that they are similar to the ones obtained from the fingerprints whose ground truth roi masks are available for training. Specifically, we propose a recurrent adversarial learning based feature alignment network that helps the fingerprint roi segmentation model to learn sensor-invariant features. Consequently, sensor-invariant features learnt by the proposed roi segmentation model help it to achieve improved segmentation performance on fingerprints acquired from the new sensor. Experiments on publicly available FVC databases demonstrate the efficacy of the proposed work.Comment: IJCNN 2021 (Accepted

    A Survey on Negative Transfer

    Full text link
    Transfer learning (TL) tries to utilize data or knowledge from one or more source domains to facilitate the learning in a target domain. It is particularly useful when the target domain has few or no labeled data, due to annotation expense, privacy concerns, etc. Unfortunately, the effectiveness of TL is not always guaranteed. Negative transfer (NT), i.e., the source domain data/knowledge cause reduced learning performance in the target domain, has been a long-standing and challenging problem in TL. Various approaches to handle NT have been proposed in the literature. However, this filed lacks a systematic survey on the formalization of NT, their factors and the algorithms that handle NT. This paper proposes to fill this gap. First, the definition of negative transfer is considered and a taxonomy of the factors are discussed. Then, near fifty representative approaches for handling NT are categorized and reviewed, from four perspectives: secure transfer, domain similarity estimation, distant transfer and negative transfer mitigation. NT in related fields, e.g., multi-task learning, lifelong learning, and adversarial attacks are also discussed
    • …
    corecore