81,370 research outputs found

    Architecture and Protocols for Service and Application Deployment in Resource Aware Ubiquitous Environments

    Get PDF
    Realizing the potential of pervasive computing will be predicated upon the availability of a flexible, mobility-aware infrastructure and the technologies to support seamless service management, provisioning and delivery. Despite the advances in routing and media access control technologies, little progress has been made towards large-scale deployment of services and applications in pervasive and ubiquitous environments. The lack of a fixed infrastructure, coupled with the time-varying characteristics of the underlying network topology, make service delivery challenging. The goal of this research is to address the fundamental design issues of a service infrastructure for ubiquitous environments and provide a comprehensive solution which is robust, scalable, secure and takes into consideration node mobility and resource constraints. We discuss the main functionalities of the proposed architecture, describe the algorithms for registration and discovery and present a power-aware location-driven message forwarding algorithm to enable node interaction in this architecture. We also provide security schemes to ensure user privacy in this architecture. The proposed architecture was evaluated through theuse of simulations. The results show that the service architecture is scalable and robust, even when node mobility is high. The comparative analysis shows that our message forwarding algorithm consistently outperforms contemporary location-driven algorithms. Furthermore, thisresearch work was implemented as a proof-of-concept implementation and tested on a real world scenario

    360 Quantified Self

    Get PDF
    Wearable devices with a wide range of sensors have contributed to the rise of the Quantified Self movement, where individuals log everything ranging from the number of steps they have taken, to their heart rate, to their sleeping patterns. Sensors do not, however, typically sense the social and ambient environment of the users, such as general life style attributes or information about their social network. This means that the users themselves, and the medical practitioners, privy to the wearable sensor data, only have a narrow view of the individual, limited mainly to certain aspects of their physical condition. In this paper we describe a number of use cases for how social media can be used to complement the check-up data and those from sensors to gain a more holistic view on individuals' health, a perspective we call the 360 Quantified Self. Health-related information can be obtained from sources as diverse as food photo sharing, location check-ins, or profile pictures. Additionally, information from a person's ego network can shed light on the social dimension of wellbeing which is widely acknowledged to be of utmost importance, even though they are currently rarely used for medical diagnosis. We articulate a long-term vision describing the desirable list of technical advances and variety of data to achieve an integrated system encompassing Electronic Health Records (EHR), data from wearable devices, alongside information derived from social media data.Comment: QCRI Technical Repor

    Challenges and opportunities of context-aware information access

    Get PDF
    Ubiquitous computing environments embedding a wide range of pervasive computing technologies provide a challenging and exciting new domain for information access. Individuals working in these environments are increasingly permanently connected to rich information resources. An appealing opportunity of these environments is the potential to deliver useful information to individuals either from their previous information experiences or external sources. This information should enrich their life experiences or make them more effective in their endeavours. Information access in ubiquitous computing environments can be made "context-aware" by exploiting the wide range context data available describing the environment, the searcher and the information itself. Realizing such a vision of reliable, timely and appropriate identification and delivery of information in this way poses numerous challenges. A central theme in achieving context-aware information access is the combination of information retrieval with multiple dimensions of available context data. Potential context data sources, include the user's current task, inputs from environmental and biometric sensors, associated with the user's current context, previous contexts, and document context, which can be exploited using a variety of technologies to create new and exciting possibilities for information access

    USEM: A ubiquitous smart energy management system for residential homes

    Get PDF
    With the ever-increasing worldwide demand for energy, and the limited available energy resources, there is a growing need to reduce our energy consumption whenever possible. Therefore, over the past few decades a range of technologies have been proposed to assist consumers with reducing their energy use. Most of these have focused on decreasing energy consumption in the industry, transport, and services sectors. In more recent years, however, growing attention has been given to energy use in the residential sector, which accounts for nearly 30% of total energy consumption in the developed countries. Here we present one such system, which aims to assist residential users with monitoring their energy usage and provides mechanisms for setting up and controlling their home appliances to conserve energy. We also describe a user study we have conducted to evaluate the effectiveness of this system in supporting its users with a range of tools and visualizations developed for ubiquitous devices such as mobile phones and tablets. The findings of this study have shown the potential benefits of our system, and have identified areas of improvement that need to be addressed in the future

    Managing ubiquitous eco cities: the role of urban telecommunication infrastructure networks and convergence technologies

    Get PDF
    A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
    corecore