168 research outputs found

    An alternative route for petroclival tumors: Without mastoidectomy and superior petrosal sinus ligation: A cadaveric study

    Get PDF
    Objective: Retrosigmoid approach and presigmoid approach and its derivatives including retrolabyrinthine, translabyrinthine, and transpetrosal approaches have long been used for reaching posterior and middle cranial fossa. In neurosurgery perspective, many types of tumors arise extradurally and surgical resection of these tumors is still challenging. We aimed to describe a modified way to approach posterior and middle fossa to contribute to the surgical management of petroclival tumors with posterior extension. Methods: Modified sigmoid approaches were performed bilaterally in 5 fresh adult cadaver heads. Results: In this approach, it was possible to reach the middle and posterior fossa with a single craniotomy. Temporal dura matter was dissected from the temporal bone with extradural gentle dissection. In addition, sigmoid sinus and superior petrosal sinus (SPS) were dissected off from the petrous bone meticulously. Subsequently, the posterolateral superior arcuate petrosectomy was performed with high-speed surgical drill extradurally by protecting the semicircular canal, labyrinthine channel, and cochlea. Dura matter was elevated for 1.5 cm with retractor above the mastoid bone. Dura was opened from an alternative area of Trautmann’s triangle. After having exposed and opened the dura, posterior fossa was reached at the level of 7.-8. cranial nerves. Conclusion: We described an alternative route which seems to be a feasible way to reach posterior and middle fossa without mastoidectomy and SPS ligation. Notably, this technique can be applicable to petroclival tumor surgery after more anatomic studies with cadaveric specimens

    Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research.

    Get PDF
    AimTo evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training.MethodsTwo 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated.ResultsThe 3D aneurysm models were successfully implanted to the cadaveric specimens' arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation.Conclusion3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research

    Neurovascular Surgery

    Get PDF
    This open access book presents the diagnosis, investigation and treatment of neurovascular diseases, and offers expert opinions and advice on avoiding complications in neurovascular surgery. It also covers complication management and post-operative follow-up care. The book is divided in to three parts; the first part discusses common approaches in neurovascular surgery, describing the steps, indications for and limitations of the approach, as well as the associated complications and how to avoid them. The second part addresses surgical treatment based on pathology, taking the different locations of lesions into consideration. The third part focuses on the technological developments that support neurovascular surgery, which may not be available everywhere, but have been included to help vascular surgeon understand the principles. This book is a guide for young neurosurgeons, neurosurgery residents and neurosurgery fellows, as well as for medical students and nurses who are interested in neurosurgery or are associated with this field in any way. It is also a useful teaching aid for senior neurosurgeons

    Neurovascular Surgery

    Get PDF
    This open access book presents the diagnosis, investigation and treatment of neurovascular diseases, and offers expert opinions and advice on avoiding complications in neurovascular surgery. It also covers complication management and post-operative follow-up care. The book is divided in to three parts; the first part discusses common approaches in neurovascular surgery, describing the steps, indications for and limitations of the approach, as well as the associated complications and how to avoid them. The second part addresses surgical treatment based on pathology, taking the different locations of lesions into consideration. The third part focuses on the technological developments that support neurovascular surgery, which may not be available everywhere, but have been included to help vascular surgeon understand the principles. This book is a guide for young neurosurgeons, neurosurgery residents and neurosurgery fellows, as well as for medical students and nurses who are interested in neurosurgery or are associated with this field in any way. It is also a useful teaching aid for senior neurosurgeons

    Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research

    Get PDF
    Aim. To evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training. Methods. Two 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated. Results. The 3D aneurysm models were successfully implanted to the cadaveric specimens’ arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation. Conclusion. 3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research
    • …
    corecore