185,302 research outputs found

    Overview of crowd simulation in computer graphics

    Get PDF
    High-powered technology use computer graphics in education, entertainment, games, simulation, and virtual heritage applications has led it to become an important area of research. In simulation, according to Tecchia et al. (2002), it is important to create an interactive, complex, and realistic virtual world so that the user can have an immersive experience during navigation through the world. As the size and complexity of the environments in the virtual world increased, it becomes more necessary to populate them with peoples, and this is the reason why rendering the crowd in real-time is very crucial. Generally, crowd simulation consists of three important areas. They are realism of behavioral (Thompson and Marchant 1995), high-quality visualization (Dobbyn et al. 2005) and convergence of both areas. Realism of behavioral is mainly used for simple 2D visualizations because most of the attentions are concentrated on simulating the behaviors of the group. High quality visualization is regularly used for movie productions and computer games. It gives intention on producing more convincing visual rather than realism of behaviors. The convergences of both areas are mainly used for application like training systems. In order to make the training system more effective, the element of valid replication of the behaviors and high-quality visualization is added

    Feeling crowded yet?: Crowd simulations for VR

    Get PDF
    With advances in virtual reality technology and its multiple applications, the need for believable, immersive virtual environments is increasing. Even though current computer graphics methods allow us to develop highly realistic virtual worlds, the main element failing to enhance presence is autonomous groups of human inhabitants. A great number of crowd simulation techniques have emerged in the last decade, but critical details in the crowd's movements and appearance do not meet the standards necessary to convince VR participants that they are present in a real crowd. In this paper, we review recent advances in the creation of immersive virtual crowds and discuss areas that require further work to turn these simulations into more fully immersive and believable experiences.Peer ReviewedPostprint (author's final draft

    A Generative Model of People in Clothing

    Full text link
    We present the first image-based generative model of people in clothing for the full body. We sidestep the commonly used complex graphics rendering pipeline and the need for high-quality 3D scans of dressed people. Instead, we learn generative models from a large image database. The main challenge is to cope with the high variance in human pose, shape and appearance. For this reason, pure image-based approaches have not been considered so far. We show that this challenge can be overcome by splitting the generating process in two parts. First, we learn to generate a semantic segmentation of the body and clothing. Second, we learn a conditional model on the resulting segments that creates realistic images. The full model is differentiable and can be conditioned on pose, shape or color. The result are samples of people in different clothing items and styles. The proposed model can generate entirely new people with realistic clothing. In several experiments we present encouraging results that suggest an entirely data-driven approach to people generation is possible

    Real-time 3D Tracking of Articulated Tools for Robotic Surgery

    Full text link
    In robotic surgery, tool tracking is important for providing safe tool-tissue interaction and facilitating surgical skills assessment. Despite recent advances in tool tracking, existing approaches are faced with major difficulties in real-time tracking of articulated tools. Most algorithms are tailored for offline processing with pre-recorded videos. In this paper, we propose a real-time 3D tracking method for articulated tools in robotic surgery. The proposed method is based on the CAD model of the tools as well as robot kinematics to generate online part-based templates for efficient 2D matching and 3D pose estimation. A robust verification approach is incorporated to reject outliers in 2D detections, which is then followed by fusing inliers with robot kinematic readings for 3D pose estimation of the tool. The proposed method has been validated with phantom data, as well as ex vivo and in vivo experiments. The results derived clearly demonstrate the performance advantage of the proposed method when compared to the state-of-the-art.Comment: This paper was presented in MICCAI 2016 conference, and a DOI was linked to the publisher's versio
    corecore