179,158 research outputs found

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity

    Advances in Computational Intelligence Applications in the Mining Industry

    Get PDF
    This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners

    Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines

    Get PDF
    The emerging contemporary natural philosophy provides a common ground for the integrative view of the natural, the artificial, and the human-social knowledge and practices. Learning process is central for acquiring, maintaining, and managing knowledge, both theoretical and practical. This paper explores the relationships between the present advances in understanding of learning in the sciences of the artificial (deep learning, robotics), natural sciences (neuroscience, cognitive science, biology), and philosophy (philosophy of computing, philosophy of mind, natural philosophy). The question is, what at this stage of the development the inspiration from nature, specifically its computational models such as info-computation through morphological computing, can contribute to machine learning and artificial intelligence, and how much on the other hand models and experiments in machine learning and robotics can motivate, justify, and inform research in computational cognitive science, neurosciences, and computing nature. We propose that one contribution can be understanding of the mechanisms of ‘learning to learn’, as a step towards deep learning with symbolic layer of computation/information processing in a framework linking connectionism with symbolism. As all natural systems possessing intelligence are cognitive systems, we describe the evolutionary arguments for the necessity of learning to learn for a system to reach human-level intelligence through evolution and development. The paper thus presents a contribution to the epistemology of the contemporary philosophy of nature

    Machine Learning Based Surrogate Model for Hurricane Storm Surge Forecasting in the Laguna Madre

    Get PDF
    Texas coastal communities are at constant risk of hurricane impacts every storm season. It is especially important to model and predict storm surge variations during hurricane and storm events. Traditionally, hurricane storm surge predictions have been the result of numerical hydrodynamics based simulations. This type of simulations often requires high amounts of computational resources and complex ocean modelling efforts. Recently, machine learning techniques are being explored and are gaining popularity in hydrologic and ocean engineering modelling fields based on their performance to model nonlinear relationships and low computational requirements for prediction. Advances in machine learning and artificial intelligence (A.I.) demand the application of these methods for the modelling of complex problems such as storm surge. This study gathers historical water level data from coastal buoy stations, uses gridded forecasted weather datasets, and builds a database of ADCIRC hydrodynamic simulations to create a machine learning based surrogate model to provide timely, non-computationally intensive and accurate storm surge predictions for the Lower Laguna Madre in Texas

    Development of Integrated Machine Learning and Data Science Approaches for the Prediction of Cancer Mutation and Autonomous Drug Discovery of Anti-Cancer Therapeutic Agents

    Get PDF
    Few technological ideas have captivated the minds of biochemical researchers to the degree that machine learning (ML) and artificial intelligence (AI) have. Over the last few years, advances in the ML field have driven the design of new computational systems that improve with experience and are able to model increasingly complex chemical and biological phenomena. In this dissertation, we capitalize on these achievements and use machine learning to study drug receptor sites and design drugs to target these sites. First, we analyze the significance of various single nucleotide variations and assess their rate of contribution to cancer. Following that, we used a portfolio of machine learning and data science approaches to design new drugs to target protein kinase inhibitors. We show that these techniques exhibit strong promise in aiding cancer research and drug discovery

    Enhanced Ai-Based Machine Learning Model for an Accurate Segmentation and Classification Methods

    Get PDF
    Phone Laser Scanner becomes the versatile sensor module that is premised on Lamp Identification and Spanning methodology and is used in a spectrum of uses. There are several prior editorials in the literary works that concentrate on the implementations or attributes of these processes; even so, evaluations of all those inventive computational techniques reported in the literature have not even been performed in the required thickness. At ToAT that finish, we examine and summarize the latest advances in Artificial Intelligence based machine learning data processing approaches such as extracting features, fragmentation, machine vision, and categorization. In this survey, we have reviewed total 48 papers based on an enhanced AI based machine learning model for accurate classification and segmentation methods. Here, we have reviewed the sections on segmentation and classification of images based on machine learning models

    Applications of Computational Geometry and Computer Vision

    Get PDF
    Recent advances in machine learning research promise to bring us closer to the original goals of artificial intelligence. Spurred by recent innovations in low-cost, specialized hardware and incremental refinements in machine learning algorithms, machine learning is revolutionizing entire industries. Perhaps the biggest beneficiary of this progress has been the field of computer vision. Within the domains of computational geometry and computer vision are two problems: Finding large, interesting holes in high dimensional data, and locating and automatically classifying facial features from images. State of the art methods for facial feature classification are compared and new methods for finding empty hyper-rectangles are introduced. The problem of finding holes is then linked to the problem of extracting features from images and deep learning methods such as convolutional neural networks. The performance of the hole-finding algorithm is measured using multiple standard machine learning benchmarks as well as a 39 dimensional dataset, thus demonstrating the utility of the method for a wide range of data
    corecore