52,970 research outputs found

    Endomorphisms of the Cuntz Algebras

    Full text link
    This mainly expository article is devoted to recent advances in the study of dynamical aspects of the Cuntz algebras O_n, with n finite, via their automorphisms and, more generally, endomorphisms. A combinatorial description of permutative automorphisms of O_n in terms of labeled, rooted trees is presented. This in turn gives rise to an algebraic characterization of the restricted Weyl group of O_n. It is shown how this group is related to certain classical dynamical systems on the Cantor set. An identification of the image in Out(O_n) of the restricted Weyl group with the group of automorphisms of the full two-sided n-shift is given, for prime n, providing an answer to a question raised by Cuntz in 1980. Furthermore, we discuss proper endomorphisms of O_n which preserve either the canonical UHF-subalgebra or the diagonal MASA, and present methods for constructing exotic examples of such endomorphisms.Comment: 2 figures, uses pictex, to appear in the Proceedings of the Workshop on Noncommutative Harmonic Analysis, Bedlewo 201

    Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices

    Full text link
    This paper proposes an efficient probabilistic method that computes combinatorial gradient fields for two dimensional image data. In contrast to existing algorithms, this approach yields a geometric Morse-Smale complex that converges almost surely to its continuous counterpart when the image resolution is increased. This approach is motivated using basic ideas from probability theory and builds upon an algorithm from discrete Morse theory with a strong mathematical foundation. While a formal proof is only hinted at, we do provide a thorough numerical evaluation of our method and compare it to established algorithms.Comment: 17 pages, 7 figure

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Context Attentive Bandits: Contextual Bandit with Restricted Context

    Full text link
    We consider a novel formulation of the multi-armed bandit model, which we call the contextual bandit with restricted context, where only a limited number of features can be accessed by the learner at every iteration. This novel formulation is motivated by different online problems arising in clinical trials, recommender systems and attention modeling. Herein, we adapt the standard multi-armed bandit algorithm known as Thompson Sampling to take advantage of our restricted context setting, and propose two novel algorithms, called the Thompson Sampling with Restricted Context(TSRC) and the Windows Thompson Sampling with Restricted Context(WTSRC), for handling stationary and nonstationary environments, respectively. Our empirical results demonstrate advantages of the proposed approaches on several real-life datasetsComment: IJCAI 201

    Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions

    Full text link
    Submodular function minimization is a fundamental optimization problem that arises in several applications in machine learning and computer vision. The problem is known to be solvable in polynomial time, but general purpose algorithms have high running times and are unsuitable for large-scale problems. Recent work have used convex optimization techniques to obtain very practical algorithms for minimizing functions that are sums of ``simple" functions. In this paper, we use random coordinate descent methods to obtain algorithms with faster linear convergence rates and cheaper iteration costs. Compared to alternating projection methods, our algorithms do not rely on full-dimensional vector operations and they converge in significantly fewer iterations

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure
    corecore