40,760 research outputs found

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio

    Count three for wear able computers

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in the Proceedings of the IEE Eurowearable 2003 Conference, and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library. A revised version of this paper was also published in Electronics Systems and Software, also subject to Institution of Engineering and Technology Copyright. The copy of record is also available at the IET Digital Library.A description of 'ubiquitous computer' is presented. Ubiquitous computers imply portable computers embedded into everyday objects, which would replace personal computers. Ubiquitous computers can be mapped into a three-tier scheme, differentiated by processor performance and flexibility of function. The power consumption of mobile devices is one of the most important design considerations. The size of a wearable system is often a design limitation

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed

    Healthcare PANs: Personal Area Networks for trauma care and home care

    Get PDF
    The first hour following the trauma is of crucial importance in trauma care. The sooner treatment begins, the better the ultimate outcome for the patient. Generally the initial treatment is handled by paramedical personnel arriving at the site of the accident with an ambulance. There is evidence to show that if the expertise of the on-site paramedic team can be supported by immediate and continuous access to and communication with the expert medical team at the hospital, patient outcomes can be improved. After care also influences the ultimate recovery of the patient. After-treatment follow up often occurs in-hospital in spite of the fact that care at home can offer more advantages and can accelerate recovery. Based on emerging and future wireless communication technologies, in a previous paper [1] we presented an initial vision of two future healthcare settings, supported by applications which we call Virtual Trauma Team and Virtual Homecare Team. The Virtual Trauma Team application involves high quality wireless multimedia communications between ambulance paramedics and the hospital facilitated by paramedic Body Area Networks (BANs) [2] and an ambulance-based Vehicle Area Network (VAN). The VAN supports bi-directional streaming audio and video communication between the ambulance and the hospital even when moving at speed. The clinical motivation for Virtual Trauma Team is to increase survival rates in trauma care. The Virtual Homecare Team application enables homecare coordinated by home nursing services and supported by the patient's PAN which consists of a patient BAN in combination with an ambient intelligent home environment. The homecare PAN provides intelligent monitoring and support functions and the possibility to ad hoc network to the visiting health professionals’ own BANs as well as high quality multimedia communication links to remote members of the virtual team. The motivation for Virtual Homecare Team is to improve quality of life and independence for patients by supporting care at home; the economic motivation is to replace expensive hospital-based care with homecare by virtual teams using wireless technology to support the patient and the carers. In this paper we develop the vision further and focus in particular on the concepts of personal and body area networks

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page
    • …
    corecore