1,604 research outputs found

    Quantifying Operational Constraints of Low-Latency Telerobotics for Planetary Surface Operations

    Full text link
    NASA's SLS and Orion crew vehicle will launch humans to cislunar space to begin the new era of space exploration. NASA plans to use the Orion crew vehicle to transport humans between Earth and cislunar space where there will be a stationed habitat known as the Deep Space Gateway (DSG). The proximity to the lunar surface allows for direct communication between the DSG and surface assets, which enables low-latency telerobotic exploration. The operational constraints for telerobotics must be fully explored on Earth before being utilized on space exploration missions. We identified two constraints on space exploration using low-latency surface telerobotics and attempts to quantify these constraints. A constraint associated with low-latency surface telerobotics is the bandwidth available between the orbiting command station and the ground assets. The bandwidth available will vary during operation. As a result, it is critical to quantify the operational video conditions required for effective exploration. We designed an experiment to quantify the threshold frame rate required for effective exploration. The experiment simulated geological exploration via low-latency surface telerobotics using a COTS rover in a lunar analog environment. The results from this experiment indicate that humans should operate above a threshold frame rate of 5 frames per second. In a separate, but similar experiment, we introduced a 2.6 second delay in the video system. This delay recreated the latency conditions present when operating rovers on the lunar farside from an Earth-based command station. This time delay was compared to low-latency conditions for teleoperation at the DSG (≤\leq0.4 seconds). The results from this experiment show a 150% increase in exploration time when the latency is increased to 2.6 seconds. This indicates that such a delay significantly complicates real-time exploration strategies.Comment: 10 pages, 8 figures, Proceedings of the IEEE Aerospace Conference, Big Sky, MT. arXiv admin note: text overlap with arXiv:1706.0375

    An intelligent, free-flying robot

    Get PDF
    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base

    Plan recognition for space telerobotics

    Get PDF
    Current research on space telerobots has largely focused on two problem areas: executing remotely controlled actions (the tele part of telerobotics) or planning to execute them (the robot part). This work has largely ignored one of the key aspects of telerobots: the interaction between the machine and its operator. For this interaction to be felicitous, the machine must successfully understand what the operator is trying to accomplish with particular remote-controlled actions. Only with the understanding of the operator's purpose for performing these actions can the robot intelligently assist the operator, perhaps by warning of possible errors or taking over part of the task. There is a need for such an understanding in the telerobotics domain and an intelligent interface being developed in the chemical process design domain addresses the same issues

    The JPL telerobotic Manipulator Control and Mechanization (MCM) subsystem

    Get PDF
    The Manipulator Control and Mechanization (MCM) subsystem of the telerobot system provides the real-time control of the robot manipulators in autonomous and teleoperated modes and real time input/output for a variety of sensors and actuators. Substantial hardware and software are included in this subsystem which interfaces in the hierarchy of the telerobot system with the other subsystems. The other subsystems are: run time control, task planning and reasoning, sensing and perception, and operator control subsystem. The architecture of the MCM subsystem, its capabilities, and details of various hardware and software elements are described. Important improvements in the MCM subsystem over the first version are: dual arm coordinated trajectory generation and control, addition of integrated teleoperation, shared control capability, replacement of the ultimate controllers with motor controllers, and substantial increase in real time processing capability

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station

    The space station assembly phase: Flight telerobotic servicer feasibility, volume 1

    Get PDF
    The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration

    The space station: Human factors and productivity

    Get PDF
    Human factor researchers and engineers are making inputs into the early stages of the design of the Space Station to improve both the quality of life and work on-orbit. Effective integration of the human factors information related to various Intravehicular Activity (IVA), Extravehicular Activity (EVA), and teletobotics systems during the Space Station design will result in increased productivity, increased flexibility of the Space Stations systems, lower cost of operations, improved reliability, and increased safety for the crew onboard the Space Station. The major features of productivity examined include the cognitive and physical effort involved in work, the accuracy of worker output and ability to maintain performance at a high level of accuracy, the speed and temporal efficiency with which a worker performs, crewmember satisfaction with their work environment, and the relation between performance and cost

    Remote surface inspection system

    Get PDF
    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported
    • …
    corecore