104 research outputs found

    A Note on Adversarial Online Complexity in Security Proofs of Duplex-Based Authenticated Encryption Modes

    Get PDF
    This note examines a nuance in the methods employed for counting the adversarial online complexity in the security proofs of duplex-based modes, with a focus on authenticated encryption. A recent study by Gilbert et al., reveals an attack on a broad class of duplex-based authenticated encryption modes. In particular, their approach to quantifying the adversarial online complexity, which capture realistic attack scenarios, includes certain queries in the count which are not in the security proofs. This note analyzes these differences and concludes that the attack of Gilbert et al, for certain parameter choices, matches the security bound

    SIDH-sign: an efficient SIDH PoK-based signature

    Get PDF
    We analyze and implement the SIDH PoK-based construction from De Feo, Dobson, Galbraith, and Zobernig. We improve the SIDH-PoK built-in functions to allow an efficient constant-time implementation. After that, we combine it with Fiat-Shamir transform to get an SIDH PoK-based signature scheme that we short label as SIDH-sign. We suggest SIDH-sign-p377, SIDH-sign-p546, and SIDH-sign-p697 as instances that provide security compared to NIST L1, L3, and L5. To the best of our knowledge, the three proposed instances provide the best performance among digital signature schemes based on isogenies

    Understanding the Duplex and Its Security

    Get PDF
    At SAC 2011, Bertoni et al. introduced the keyed duplex construction as a tool to build permutation based authenticated encryption schemes. The construction was generalized to full-state absorption by Mennink et al. (ASIACRYPT 2015). Daemen et al. (ASIACRYPT 2017) generalized it further to cover much more use cases, and proved security of this general construction, and Dobraunig and Mennink (ASIACRYPT 2019) derived a leakage resilience security bound for this construction. Due to its generality, the full-state keyed duplex construction that we know today has plethora applications, but the flip side of the coin is that the general construction is hard to grasp and the corresponding security bounds are very complex. Consequently, the state-of-the-art results on the full-state keyed duplex construction are not used to the fullest. In this work, we revisit the history of the duplex construction, give a comprehensive discussion of its possibilities and limitations, and demonstrate how the two security bounds (of Daemen et al. and Dobraunig and Mennink) can be interpreted in particular applications of the duplex

    Generic Security of the Ascon Mode: On the Power of Key Blinding

    Get PDF
    The Ascon authenticated encryption scheme has recently been selected as winner of the NIST Lightweight Cryptography competition. Despite its fame, however, there is no known generic security analysis of its mode: most importantly, all related generic security results only use the key to initialize the state and do not take into account key blinding internally and at the end. In this work we present a thorough multi-user security analysis of the Ascon mode, where particularly the key blinding is taken into account. Most importantly, our analysis includes an authenticity study in various attack settings. This analysis includes a description of a new security model of authenticity under state recovery, that captures the idea that the mode aims to still guarantee authenticity and security against key recovery even if an inner state is revealed to the adversary in some way, for instance through leakage. We prove that Ascon satisfies this security property, thanks to its unique key blinding technique

    (Quantum) Collision Attacks on Reduced Simpira v2

    Get PDF
    Simpira v2 is an AES-based permutation proposed by Gueron and Mouha at ASIACRYPT 2016. In this paper, we build an improved MILP model to count the differential and linear active Sboxes for Simpira v2, which achieves tighter bounds of the minimum number of active Sboxes for a few versions of Simpira v2. Then, based on the new model, we find some new truncated differentials for Simpira v2 and give a series (quantum) collision attacks on two versions of reduced Simpira v2

    Fast and Frobenius: Rational Isogeny Evaluation over Finite Fields

    Full text link
    Consider the problem of efficiently evaluating isogenies ϕ:E→E/H\phi: E \to E/H of elliptic curves over a finite field Fq\mathbb{F}_q, where the kernel H=⟨G⟩H = \langle G\rangle is a cyclic group of odd (prime) order: given EE, GG, and a point (or several points) PP on EE, we want to compute ϕ(P)\phi(P). This problem is at the heart of efficient implementations of group-action- and isogeny-based post-quantum cryptosystems such as CSIDH. Algorithms based on V{\'e}lu's formulae give an efficient solution to this problem when the kernel generator GG is defined over Fq\mathbb{F}_q. However, for general isogenies, GG is only defined over some extension Fqk\mathbb{F}_{q^k}, even though ⟨G⟩\langle G\rangle as a whole (and thus ϕ\phi) is defined over the base field Fq\mathbb{F}_q; and the performance of V{\'e}lu-style algorithms degrades rapidly as kk grows. In this article we revisit the isogeny-evaluation problem with a special focus on the case where 1≤k≤121 \le k \le 12. We improve V{\'e}lu-style isogeny evaluation for many cases where k=1k = 1 using special addition chains, and combine this with the action of Galois to give greater improvements when k>1k > 1

    Algebraic Attacks on Rasta and Dasta Using Low-Degree Equations

    Get PDF
    Rasta and Dasta are two fully homomorphic encryption friendly symmetric-key primitives proposed at CRYPTO 2018 and ToSC 2020, respectively. We point out that the designers of Rasta and Dasta neglected an important property of the χ\chi operation. Combined with the special structure of Rasta and Dasta, this property directly leads to significantly improved algebraic cryptanalysis. Especially, it enables us to theoretically break 2 out of 3 instances of full Agrasta, which is the aggressive version of Rasta with the block size only slightly larger than the security level in bits. We further reveal that Dasta is more vulnerable to our attacks than Rasta for its usage of a linear layer composed of an ever-changing bit permutation and a deterministic linear transform. Based on our cryptanalysis, the security margins of Dasta and Rasta parameterized with (n,κ,r)∈{(327,80,4),(1877,128,4),(3545,256,5)}(n,\kappa,r)\in\{(327,80,4),(1877,128,4),(3545,256,5)\} are reduced to only 1 round, where nn, κ\kappa and rr denote the block size, the claimed security level and the number of rounds, respectively. These parameters are of particular interest as the corresponding ANDdepth is the lowest among those that can be implemented in reasonable time and target the same claimed security level

    Quantum Attacks on Hash Constructions with Low Quantum Random Access Memory

    Get PDF
    At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert proposed the quantum herding attacks on iterative hash functions for the first time. Their attack needs exponential quantum random access memory (qRAM), more precisely {20.43n2^{0.43n}} quantum accessible classical memory (QRACM). As the existence of large qRAM is questionable, Benedikt et al. leave an open question on building low-qRAM quantum herding attacks. In this paper, we answer this open question by building a quantum herding attack, where the time complexity is slightly increased from Benedikt et al.\u27s 20.43n2^{0.43n} to ours 20.46n2^{0.46n}, but {it does not need qRAM anymore (abbreviated as no-qRAM)}. Besides, we also introduce various low-qRAM {or no-qRAM} quantum attacks on hash concatenation combiner, hash XOR combiner, Hash-Twice, and Zipper hash functions

    Fully Collusion Resistant Trace-and-Revoke Functional Encryption for Arbitrary Identities

    Get PDF
    Functional Encryption (FE) has been extensively studied in the recent years, mainly focusing on the feasibility of constructing FE for general functionalities, as well as some realizations for restricted functionalities of practical interest, such as inner-product. However, little consideration has been given to the issue of key leakage on FE. The property of FE that allows multiple users to obtain the same functional keys from the holder of the master secret key raises an important problem: if some users leak their keys or collude to create a pirated decoder, how can we identify at least one of those users, given some information about the compromised keys or the pirated decoder? Moreover, how do we disable the decryption capabilities of those users (i.e. traitors)? Two recent works have offered potential solutions to the above traitor scenario. However, the two solutions satisfy weaker notions of security and traceability, can only tolerate bounded collusions (i.e., there is an a priori bound on the number of keys the pirated decoder obtains), or can only handle a polynomially large universe of possible identities. In this paper, we study trace-and-revoke mechanism on FE and provide the first construction of trace-and-revoke FE that supports arbitrary identities, is both fully collusion resistant and fully anonymous. Our construction relies on a generic transformation from revocable predicate functional encryption with broadcast (RPFE with broadcast, which is an extension of revocable predicate encryption with broadcast proposed by Kim and J. Wu at ASIACRYPT\u272020) to trace-and-revoke FE. Since this construction admits a generic construction of trace-and-revoke inner-product FE (IPFE), we instantiate the trace-and-revoke IPFE from the well-studied Learning with Errors (LWE). This is achieved by proposing a new LWE-based attribute-based IPFE (ABIPFE) scheme to instantiate RPFE with broadcast

    Weak Keys in Reduced AEGIS and Tiaoxin

    Get PDF
    AEGIS-128 and Tiaoxin-346 (Tiaoxin for short) are two AES-based primitives submitted to the CAESAR competition. Among them, AEGIS-128 has been selected in the final portfolio for high-performance applications, while Tiaoxin is a third-round candidate. Although both primitives adopt a stream cipher based design, they are quite different from the well-known bit-oriented stream ciphers like Trivium and the Grain family. Their common feature consists in the round update function, where the state is divided into several 128-bit words and each word has the option to pass through an AES round or not. During the 6-year CAESAR competition, it is surprising that for both primitives there is no third-party cryptanalysis of the initialization phase. Due to the similarities in both primitives, we are motivated to investigate whether there is a common way to evaluate the security of their initialization phases. Our technical contribution is to write the expressions of the internal states in terms of the nonce and the key by treating a 128-bit word as a unit and then carefully study how to simplify these expressions by adding proper conditions. As a result, we find that there are several groups of weak keys with 296 keys each in 5-round AEGIS-128 and 8-round Tiaoxin, which allows us to construct integral distinguishers with time complexity 232 and data complexity 232. Based on the distinguisher, the time complexity to recover the weak key is 272 for 5-round AEGIS-128. However, the weak key recovery attack on 8-round Tiaoxin will require the usage of a weak constant occurring with probability 2−32. All the attacks reach half of the total number of initialization rounds. We expect that this work can advance the understanding of the designs similar to AEGIS and Tiaoxin
    • …
    corecore