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Abstract. Simpira v2 is an AES-based permutation proposed by Gueron and Mouha
at ASIACRYPT 2016. In this paper, we build an improved MILP model to count the
differential and linear active Sboxes for Simpira v2, which achieves tighter bounds of
the minimum number of active Sboxes for a few versions of Simpira v2. Then, based
on the new model, we find some new truncated differentials for Simpira v2 and give
a series (quantum) collision attacks on two versions of reduced Simpira v2.
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1 Introduction
Simpira v2 is a family of cryptographic permutations designed by Gueron and Mouha in
ASIACRYPT 2016 [GM16] that accepts arbitrarily large input sizes of b× 128 bits, where
b is an positive number. In order to take advantage of the Intel AES-NI instruction set for
optimized software implementations, Simpira v2 uses two-round AES as its build blocks.

There have been several cryptanalysis papers on Simpira. Rønjom [Røn16] proposed
an invariant subspace attack on Simpira v1, an informal version of Simpira. At SAC
2016, Dobraunig et al. [DEM16] provided the differential trails with only 40 (instead of 75)
active Sboxes for Simpira v1 [b = 4] for the recommended 15 rounds. Zong et al. [RZW18]
presented the impossible differential cryptanalysis of Simpira v2 [b = 4]. At ACISP 2017,
Tjuawinata et al. [THW17] proposed truncated differential analysis on Simpira v2 [b = 3].
The authors of Simpira v2 proposed SPHINCS-Simpira [GM17], which is a variant of
the SPHINCS [BHH+15] signature scheme with Simpira in DM hashing mode as a building
block. At PQCrypto 2018, Stefan Kölbl [Köl18] compared the performance of SPHINCS
[BHH+15] instantiated with several cryptographic hash functions, where Simpira and
Haraka [KLMR16] outperform other hash functions, including ChaCha, Keccak and SHA256.
When building hash functions with Simpira v2, we have to understand its security against
collision attacks, (second) preimage attacks, etc. In this paper, we focus on the security of
Simpira v2 against (quantum) collision attacks.

Post-quantum cryptography has received much attention due to the Shor’s seminal work
[Sho94]. For the popular public-key cryptosystems, like RSA and ECC, their security are
often reduced to some mathematical problems, i.e., factor numbers and compute discrete
logarithms, which are directly affected by Shor’s quantum algorithm. The study on
symmetric cryptography aganist quantum computers has been not as active as public-key
cryptography, until recently a series of quantum polynomial time attacks on symmetric
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schemes, such as 3-round Feistel [KM10], EM construction [KM12] and a lot of MACs and
authenticated encryption schemes [KLLN16a]. Since then, a lot of quantum cryptanalysis
results [KLLN16b, LM17, BHN+19, CNS17, HS18a, HS18b, GNS18, BNS19a, BNS19b,
NS20] on symmetric ciphers have appeared.

For generic (quantum) collision attacks, the parallel rho method [vOW94] gave the
tradeoff time complexity T = 2n/2/S in both classical setting and quantum setting [Ber].
In the quantum setting, BHT algorithm [BHT98] found collisions with a query complexity
of O(2n/3) and the quantum random access memory (qRAM) is O(2n/3)-qubit. But
researchers generally agree that large amounts of memory are not easy to make. Therefore,
it also makes sense when there are algorithms that require only a small amount of memory
but have a time complexity greater than O(2n/3). Chailloux et al. [CNS17] presented
a collision-finding algorithm that runs in time O(22n/5) with a classical memory of size
O(2n/5). None of these quantum attacks is directed at a specific structure.

When delving into dedicated collision attacks on specific hash functions, such as AES-like
hashing, we have rebound attacks introduced by Mendel et al. at FSE 2009 [MRST09]. At
ASIACRYPT 2009, Lamberger et al. improved the rebound attacks by proposing multiple
inbound phases [LMR+09]. At FSE 2010, Gilbert et al. introduced the Super-Sbox
technique to further extend the inbound phase [GP10]. At CRYPTO 2011, Naya-Plasencia
[Nay11] improved the rebound attack by introducing clever ways to merging large lists.
The rebound attacks have been successfully applied to many hash functions, such as
WHIRLPOOL [MRST09, LMR+09], Grøstl [MRST09, JNP12, MRS14, JNP13, SLW+10],
ECHO [JNS11, MPRS09], Keccak [DGPW12], Lane [MNN+09], etc.

At EUROCRYPT 2020, for the first time, Hosoyamada and Sasaki [HS20] presented
dedicated collision attacks on AES-MMO and WHIRLPOOL by applying a quantum version
of the rebound attack. Later, Dong et al. [DSS+20] reduced the qRAM significantly by
applying a quantum version of non-full Super-Sbox technique [SLW+10] into the quantum
rebound attacks on reduced AES-MMO and Grøstl, which outperforms the generic collision
attack given by Chailloux et al. [CNS17].

Our Contribution.
In this paper, we present collision attacks on reduced Simpira v2 with Davies-Meyer
hashing mode in both classical and quantum setting. First, we build an improved MILP
model to count the differential and linear active Sboxes for Simpira v2, which achieves
tighter bounds of the minimum number of active Sboxes for a few versions of Simpira
v2. Then, based on the new model, we find some new truncated differentials for Simpira
v2 and give a series (quantum) collision attacks on two versions of reduced Simpira v2,
including the (quantum) collision attacks on 9-round Simpira v2 [b = 2] and 11-round
Simpira v2 [b = 4]. A summary of the main attacks on Simpira v2 is given in Table 1.
Note that for the 11-round quantum collision attacks on branches [A,D] and [B,D] of
Simpira-4, the attacks are better than the quantum version of parallel rho algorithm [HS20].
However, the time is slightly larger than the generic attack by Chailloux, Naya-Plasencia,
Schrottenloher [CNS17], which needs 2102.4 time and 251.2 classical memory.

2 Preliminaries
2.1 Definition of Simpira v2

Simpira v2 [GM16] is a family of cryptographic permutations that supports inputs of
128× b bits, where b is number of branches. When b = 1, Simpira v2 consists of 12 rounds
AES with different constants. When b ≥ 2, Simpira v2 is a Generalized Feistel Structure
(GFS) with the F -function that consists of two rounds of AES. We denote Simpira v2
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Table 1: Classical and quantum collision attacks (no QRAM) on Simpira v1 and Simpira
v2. The total number of rounds is 15 for b = 2, b = 4, 21 for b = 3. C-Mem: classical
memory; QRAM: quantum random access memory. For Simpira-4, the four branches are
denoted as (A,B,C,D). “Collision [A,B]” means the collision happens in branch A and
B.

Simpira v1

Branches Setting Attack Rounds Time C-Mem Source

b = 4 Classical Collision 15 282.62 233 [DEM16]
15 2110.16 233 [DEM16]

Simpira v2

b = 2 Classical Collision 9 296 232 Sect. 4
Quantum 9 266.1 0 Sect. 5

b = 3 Classical
Distinguisher

8 2 - [THW17]
9 222 - [THW17]
10 223 - [THW17]

Key-recovery 9 250 - [THW17]
10 270 - [THW17]

b = 4

Classical

Key-recovery 9 257 257 [RZW18]
Key-recovery 9 2170 2170 [RZW18]

Collision [A, B] 11 264 232 Sect. 4
Collision [A, C] 11 296 232 Sect. 7
Collision [A, D] 11 % % %

Collision [B, C] 11 296 232 Sect. 7
Collision [B, D] 11 % % %

Collision [C, D] 11 296 232 Sect. 7

Quantum

Collision [A, B] 11 249.85 0 Sect. 6
Collision [A, C] 11 265.85 0 Sect. 7
Collision [A, D] 11 2113.85 0 Sect. 7
Collision [B, C] 11 265.85 0 Sect. 7
Collision [B, D] 11 2113.85 0 Sect. 7
Collision [C, D] 11 265.85 0 Sect. 7
Collision [∗, ∗] 11 2102.4 251.2 [CNS17]

family members with b branches as Simpira-b. The total number of rounds is 15 for
b = 2, b = 4 and b = 6, 21 for b = 3, and 18 for b = 8. The round function F consists of
an AddConstant (AC) operation and two rounds of AES while omitting the AddRoundKey
(ARK) operation as illustratedin Figure 1. Otherwise, the operations such as SubBytes
(SB), ShiftRows (SR), MixColumns (MC) are identical as AES. Every subblock can be
divided into a 4× 4 matrix of bytes as follows:

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .
Thus, the definition of the round function is:

F (S) = MC ◦ SR ◦ SB ◦ AC ◦ MC ◦ SR ◦ SB(S).

To refer to intermediate states of F for an input S, we use the following notations:

S
SB−→ SSB1 SR−→ SSR1 MC−→ SMC1 AC−→ SAC1 SB−→ SSB2 SR−→ SSR2 MC−→ SMC2 = F (S).
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Figure 1: Round function of Simpira-2

2.2 The Rebound Attack

Fbw Fin Ffw

inbound
outbound outbound

Figure 2: The Rebound-Attack Technique

The rebound attack was first introduced by Mendel et al. in [MRST09], it consists of
an inbound phase and an outbound phase as shown in Figure 2, where F is an internal
block cipher or permutation which is split into three subparts, then F = Ffw ◦ Fin ◦ Fbw.

• Inbound phase. In the inbound phase, the attackers efficiently fulfill the low
probability part in the middle of the differential trail with a meet-in-the-middle
technique. The degree of freedom is the number of matched pairs in the inbound
phase, which will act as the starting points for the outbound phase.

• Outbound phase. In the outbound phase, the matched values of the inbound
phase, i.e., starting points, are computed backward and forward through Fbw and
Ffw to obtain a pair of values which satisfy the differential trail.

Suppose the probability of the inbound phase is p, then we have to prepare 1/p starting
points in the inbound phase to expect one pair conforming to the differential trail of the
outbound phase. Hence, the degree of freedom should be larger than 1/p.

2.3 Super-Sbox Technique
The Super-Sbox technique was introduced by Gilbert et al. [GP10] and Lamberger et al.
[LMR+09]. We use Figure 3 to briefly recall the details. We want to search for a pair of
values whose difference satisfies the truncated differential ∆Z0→∆W2.

For each of the 232 differences at state Z0, since the operation MC is linear, we compute
the corresponding difference at state X1. For each of the 232 differences at state W2,
we compute the corresponding difference at state Y2 and store them in a list L. Then,
given ∆X1, we search for a pair of values whose difference satisfies the differential trail
∆X1→∆Y2, where ∆Y2 ∈ L. Here, we divide the search process into 4 parts that can
all be computed independently. Each part contains 4 bytes, and we call the operation of
changing the values of these 4 bytes from the state X1 to state Y2 as a Super-Sbox. We
refer the reader to the example in Figure 3, one of the Super-Sboxes is highlighted. For
each of the 232 pairs of input values to a Super-Sbox at X1, we compute the corresponding
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Z0 W0

MC AC

X1 Y1 Z1 W1

SB SR MC AC

X2 Y2 Z2 W2

SB SR MC

Figure 3: Super-Sbox technique

output difference ∆Y2. Since the list L contains 232 values, the Super-Sbox position of
each value has one collision on average with the output difference. Similarly, we perform
the same analysis for the remaining 3 Super-Sboxes. After that, each difference in list
L can be obtained once for the 4 Super-Sboxes. Then we get 232 pairs (X1, X1 ⊕∆X1)
satisfying the differential ∆X1→∆Y2, ∆Y2 ∈ L, and the values and difference at Z0 can
be computed from X1.

Complexity Analysis. In the above program, every Super-Sbox requires to compute 232

input values, the length of which is 32 bits, and list L contains 232 differences. Thus, both
the time complexity and the memory complexity are 232, and we can obtain 232 pairs of
values that satisfy the requirement. So the amortized complexity to get one pair of values
that satisfies the differential trail ∆Z0→∆W2 is 1.

In a quantum setting, Hosoyamada and Sasaki [HS20] introduced two methods to apply
the Super-Sbox technique. The first method is to use quantum random access memory
(qRAM) to store the Super-Sbox. The second method is to apply the nested Grover’s
algorithm [Gro96] to compute the pair that conforms to ∆Z0 → ∆W2 with an additional
time complexity of about 216 without qRAM.

2.4 Permutation-based Hashing with Davies-Meyer Construction

Cryptographic Hash Functions

Simpira4

• Permutation based on AES rounds.

• Feistel construction.

• 256- and 512-bit permutation.

x π H(x)

tru
n
c

4
https://eprint.iacr.org/2016/122

13

Figure 4: Davies-Meyer Construction

The designers of Simpira proposed several applications to the Simpira permutation,
such as a block cipher using Even-Mansour construction, a wide-block encryption scheme
and so on. One particular suggested application is a hash function using Davies-Meyer
construction. The proposal is to use a single-block, keyless Davies-Meyer-like construction
with a feed-forward, and compute the hash function H(x) of x as shown in Figure 4. We
can represent it as follows:

H(x) = trunc(π(x)⊕ x),

where the function π is the permutation Simpira-b. This approach provides an efficient
construction for hashing inputs of limited length, which is required by many applications.
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2.5 Quantum Computation and Quantum RAM
The states of an n-qubit quantum system can be described as unit vectors in C2n under the
orthonormal base {|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉}, alternatively written as {|i〉 : 0 ≤ i <
2n}. The quantum algorithms can be described as series of unitary transformations and
measurements acting on the state of an n-qubit system, where all unitary transformations
can be implemented as a sequence of single-qubit and two-qubit quantum gates in the
standard quantum circuit model. Then we introduce the standard quantum circuit model
and adopt the basic gate set {H,CNOT, T} (Clifford+T gates). Here, H is the single qubit
Hadamard gate, CNOT is the two-qubit CNOT gate denote as CNOT : |a〉|b〉 7→ |a〉|b⊕a〉,
and T is the gate defined as T : |0〉 7→ |0〉 and T : |1〉 7→ eiπ/4|1〉. The identity operator on
n-qubit states is denoted by I⊗n.

Superposition Oracles for Classical Circuit. When f is a Boolean function, the quantum
oracle of a function f : {0, 1}n 7→ {0, 1} is modeled as the unitary operator Uf defined as:

Uf : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉,

where x ∈ {0, 1}n and y ∈ {0, 1}. As a linear operator, Uf acts on superposition states as:

Uf

 ∑
x∈{0,1}n

ai|x〉|0〉

 =
∑

x∈{0,1}n

ai|x〉|f(x)〉.

We notice that if there is an efficient classical circuit that computes f , the corresponding
quantum circuit of Uf can be implemented efficiently in the quantum circuit model.

Grover’s Algorithm. First, we describe the problem which can be solved by the Grover’s
algorithm.
Problem. Given a search space of 2n elements, and a Boolean function or predicate
f : {0, 1}n 7→ {0, 1}, where f is given as a black-box, find x such that f(x) = 1. (For the
sake of simplicity, we assume that there is only one such x).

In classical setting, the best algorithm with a black-box access to f requires about
2n evaluations of the black-box oracle to identify x such that f(x) = 1 with probability
one. In the quantum setting, Grover search provides a quadratic speedup to solve the
same problem, which needs about O(

√
2n) calls to a quantum oracle Uf that outputs∑

x
ai|x〉|y ⊕ f(x)〉 upon input of

∑
x
ai|x〉|y〉. Firstly, we construct a uniform superposition

of states

|φ〉 = 1√
2n

∑
x∈{0,1}n

|x〉

by applying the Hadamard transformation H⊗n to |0〉⊗n. Then Grover’s algorithm itera-
tively applies the unitary transformation (2|φ〉〈φ| − In)Uf to |φ〉 such that the amplitudes
of those values x with f(x) = 1 are amplified. And then we measure the final state x
which has an overwhelming probability such that satisfies f(x) = 1.
Remark. It is important to understand what resources are required to implement the
Oracle. Because there may be a lot of complexity when constructing Oracle circuits using
Grover algorithm, Oracle circuits need to be implemented efficiently, or the acceleration of
the search will be illusory.

Quantum Random Access Memories (qRAM). For a list of classical data L = {x0, · · · , x2n−1}
with x ∈ {0, 1}m, we introduce the definition of the qRAM for L. Quantum random access
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memory (QRAM) handle the quantum superposition of 2n memory cells by using n-qubit,
it is a quantum analogue of a classical random access memory, so the qRAM for L can be
defined as an unitary transformation ULQRAM :

ULqRAM : |i〉Addr ⊗ |y〉Out 7→ |i〉Addr ⊗ |y ⊕ xi〉Out,

where i ∈ {0, 1}n and y ∈ {0, 1}m , and |· 〉Addr and |· 〉Out may be regarded as the address
and output registers respectively.

Therefore, we can access any quantum superposition of the data cells by using the
corresponding superposition of addresses:

ULqRAM

∑
i

ai|i〉|y〉

 =
∑
i

ai|i〉|y ⊕ xi〉.

3 Minimal Number of Active Sboxes for Simpira v2

3.1 Incompatibilities in the Truncated Trails of Simpira v2

When searching differential or linear trail on AES-like ciphers, it is usually to first determine
a truncated differential trail with low number of active Sboxes. To build such searching
algorithm, one has to deal with the incompatibilities, where the truncated trail within a
small number of rounds holds but may bring in internal contradictions when considering
more rounds. Similar incompatibilities [BN10, FJP13, GLMS18, ENP19] in the truncated
differential or linear trail of AES-like ciphers have been discovered before. Here we find
an incompatibility for a 3-round truncated linear trail for Simpira-2 as shown in Figure
5, where a one-round truncated linear trail is iterated 3 times. Now we prove that the
3-round trail is incompatible.

S0 SSR1
0 SAC

0 SSR2
0 SMC2

0

SB
SR

MC
AC

SB
SR

MC
⊕

S1 SSR1
1 SAC

1 SSR2
1 SMC2

1

? SB
SR

MC
AC

SB
SR

MC
⊕

S2 SSR1
2 SAC

2 SSR2
2 SMC2

2

SB
SR

MC
AC

SB
SR

MC
⊕

Figure 5: The 3-round linear trail on Simpira-2

Proof. Let us focus on the state S1 marked with a star, we have the following equation:

S1 = SMC2
0 ⊕ SMC2

2 = MC(SSR2
0 )⊕MC(SSR2

2 ) = MC(SSR2
0 ⊕ SSR2

2 ).
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As shown in Figure 5, follow the linear iterative trail of the least active Sboxes, each
column of SSR2

0 and SSR2
2 has only one active Sbox, and there are at most two active Sboxes

after XOR, namely each column of SSR2
0 ⊕ SSR2

2 with two active Sboxes at most.
According to the constraint of MC in the AES, that is, if the input to one column of MC

has active Sboxes, then the total number of active Sboxes of input and output on this
column is greater than or equal to 5. Thus, each column of S1 should have at least 3 active
Sboxes or no active Sboxes. In the given iterative trail, there is only one active Sbox in
the first column of S1. It is contradictory. Hence, there is no such linear trail. Based on
this contradiction, we present an improved MILP model, which can get a tighter bound of
the estimation of number of active Sboxes.

3.2 Improved MILP Model for Counting Active Sboxes in the Differen-
tial Trails

For Simpira-2, we introduce a new MILP model and use it to search the linear and
differential trail that has a minimum number of active Sboxes. The MILP models of
the linear and differential trail are similar. Here we first focus on the MILP model of
differential trails. The MILP model can also be simply translated into models for other
versions of Simpira-b.

For the differential trail of r-round Simpira-2, we define some notations. First, for
the convenience of expression, we directly denote the difference of the state Si as Si here,
and the same for other states.

Then, we divide each difference of these states into 16 bytes, and use 1 and 0 to
indicate its activity. For example, for the bytes in the row k (k = 0, 1, 2, 3) and column
l (l = 0, 1, 2, 3) of the state ∆Si, we call it the (k + 4l)-th byte of the state, marked as
Si[k + 4l]. When the Sbox is active, set Si[k + 4l] = 1, otherwise, Si[k + 4l] = 0. Next, we
show the constraints of our MILP model for searching differential trails with the minimum
number of active Sboxes.

Constraints of AES Round Function. The round of AES includes SubBytes (SB),
ShiftRows (SR), MixColumns (MC). For these operations, SB does not change the ac-
tivity of the state, and SR only changes the activity position in the state. The main
constraint is in the MC operation, that the branch number is greater than or equal to 5.
Therefore, each column and its corresponding output state meets the following conditions:

3∑
k=0

(SSR1
i [k + 4l] + SMC1

i [k + 4l])− 5d ≥ 0,

d− SSR1
i [4l] ≥ 0,

d− SSR1
i [1 + 4l] ≥ 0,

d− SSR1
i [2 + 4l] ≥ 0,

d− SSR1
i [3 + 4l] ≥ 0,
d− SMC1

i [4l] ≥ 0,
d− SMC1

i [1 + 4l] ≥ 0,
d− SMC1

i [2 + 4l] ≥ 0,
d− SMC1

i [3 + 4l] ≥ 0,

(1)

where auxiliary variable d is binary, and 0 ≤ i ≤ r, l = 0, 1, 2, 3.

Constraints on the Feistel Structure. For the differential trail of the Feistel structure,
the difference must be satisfied at the branch XOR conditions, that is, SMC2

i = Si−1 ⊕ Si+1,
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so we get the following XOR constraint model [ENP19]:

SMC2
i [t] + Si−1[t] ≥ Si+1[t],
SMC2
i [t] + Si+1[t] ≥ Si−1[t],
Si−1[t] + Si+1[t] ≥ SMC2

i [t],

where 1 ≤ i ≤ (r − 1), 0 ≤ t ≤ 15.
Due to the particularity of round function F of Simpira-2 structure, we give a more

accurate constraint, that is, the input of Fi function satisfies the following relationship:

Si = SMC2
i−1 ⊕ Si−2 = MC(SSR2

i−1)⊕ Si−2,

Si = SMC2
i+1 ⊕ Si+2 = MC(SSR2

i+1)⊕ Si+2.

Thus, we get an equation:

MC(SSR2
i−1 ⊕ SSR2

i+1) = Si−2 ⊕ Si+2.

Define two new state variables Ai and Bi such that they satisfy the following relationship:{
Ai = SSR2

i−1 ⊕ SSR2
i+1,

Bi = Si−2 ⊕ Si+2.
(2)

According the Equation (2), we give the XOR constraint [ENP19]:

Ai[t] + SSR2
i−1[t] ≥ SSR2

i+1[t],
Ai[t] + SSR2

i+1[t] ≥ SSR2
i−1[t],

SSR2
i−1[t] + SSR2

i+1[t] ≥ Ai[t],
Bi[t] + Si−2[t] ≥ Si+2[t],
Bi[t] + Si+2[t] ≥ Si−2[t],
Si−2[t] + Si+2[t] ≥ Bi[t],

where 2 ≤ i ≤ (r − 3), 0 ≤ t ≤ 15. Meanwhile, Ai and Bi are needed to satisfy MC
constraint model as Eq. (4):

3∑
k=0

(Ai[k + 4l] +Bi[k + 4l])− 5d ≥ 0,

d−Ai[4l] ≥ 0,
d−Ai[1 + 4l] ≥ 0,
d−Ai[2 + 4l] ≥ 0,
d−Ai[3 + 4l] ≥ 0,

d−Bi[4l] ≥ 0,
d−Bi[1 + 4l] ≥ 0,
d−Bi[2 + 4l] ≥ 0,
d−Bi[3 + 4l] ≥ 0,

(3)

where auxiliary variable d is binary, and 2 ≤ i ≤ (r − 3), l = 0, 1, 2, 3.
Through the above modeling, we have complete constraints for the differential trail

propagation of Simpira-2. The objective function is to minimize the number of the active
Sboxes for given r-round Simpira-2. With the same way, we can also make the MILP
model for other values of b, such as b = 3, b = 4, b = 6, b = 8. We summarize all results in
Table 2 and get tighter bounds for different versions of Simpira-b.

3.3 Improved MILP Model for Counting Active Sboxes in the Linear
Trails

Now we briefly introduce the linear MILP model. For the linear trail of r-round Simpira-2,
we denote the linear mask of the state Si as Si here, and the same for other states. Then
we have the model as follows:
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Table 2: Lower bounds on the number of active Sboxes of the differential trail of Simpira
v2 with b branches

b
Rounds Ref.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 - - - - 25 - - - - - - - - - - [GM16]
5 5 10 25 30 35 40 55 60 65 70 85 90 95 100 Ours

3 - - - - - 25 - - - - - - - - - [GM16]
5 5 5 5 10 30 35 35 40 55 61 70 75 80 92 Ours

4 - - - - 40 - - - - - - - - - - [GM16]
5 5 10 30 40 60 60 65 70 90 100 120 120 125 130 Ours

6 - - - 25 - - - - - - - - - - - [GM16]
5 5 10 30 40 60 70 115 120 130 140 160 - - - Ours

8 - - - 25 - - - - - - - - - - - [GM16]
5 5 10 30 40 60 70 120 145 - - - - - - Ours

Constraints of AES Round Function. The main constraint is in the MC operation, that the
branch number is greater than or equal to 5. Therefore, each column and its corresponding
output state meets the following conditions:

3∑
k=0

(SSR1
i [k + 4l] + SMC1

i [k + 4l])− 5d ≥ 0,

d− SSR1
i [4l] ≥ 0,

d− SSR1
i [1 + 4l] ≥ 0,

d− SSR1
i [2 + 4l] ≥ 0,

d− SSR1
i [3 + 4l] ≥ 0,
d− SMC1

i [4l] ≥ 0,
d− SMC1

i [1 + 4l] ≥ 0,
d− SMC1

i [2 + 4l] ≥ 0,
d− SMC1

i [3 + 4l] ≥ 0,

(4)

where auxiliary variable d is binary, and 0 ≤ i < r, l = 0, 1, 2, 3.

Constraints on the Feistel Structure. For the linear trail of the Feistel structure, the
linear mask must be satisfied at the branch XOR conditions, that is, Si = SMC2

i−1 ⊕ SMC2
i+1, so

we get the following XOR constraint model [ENP19]:

Si[t] + SMC2
i−1[t] ≥ SMC2

i+1[t],
Si[t] + SMC2

i+1[t] ≥ SMC2
i−1[t],

SMC2
i−1[t] + SMC2

i+1[t] ≥ Si[t],

where 1 ≤ i < (r − 1), 0 ≤ t ≤ 15.
Due to the particularity of round function F of Simpira-2 structure, we give a more

accurate constraint, that is, the input of Fi function satisfies the following relationship:

Si = SMC2
i−1 ⊕ SMC2

i+1

= MC(SSR2
i−1)⊕ MC(SSR2

i+1)
= MC(SSR2

i−1 ⊕ SSR2
i+1).

Thus, we get an equation:

Si = MC(SSR2
i−1 ⊕ SSR2

i+1).

Define a new state variables Ai and such that they satisfy the following relationship:

Ai = SSR2
i−1 ⊕ SSR2

i+1. (5)
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According the Equation (5), we give the XOR constraint [ENP19]:

Ai[t] + SSR2
i−1[t] ≥ SSR2

i+1[t],
Ai[t] + SSR2

i+1[t] ≥ SSR2
i−1[t],

SSR2
i−1[t] + SSR2

i+1[t] ≥ Ai[t],

where 1 ≤ i < (r−1), 0 ≤ t ≤ 15. Meanwhile, Ai and Si are needed to satisfy MC constraint
model as Eq. (4):

3∑
k=0

(Ai[k + 4l] + Si[k + 4l])− 5d ≥ 0,

d−Ai[4l] ≥ 0,
d−Ai[1 + 4l] ≥ 0,
d−Ai[2 + 4l] ≥ 0,
d−Ai[3 + 4l] ≥ 0,

d− Si[4l] ≥ 0,
d− Si[1 + 4l] ≥ 0,
d− Si[2 + 4l] ≥ 0,
d− Si[3 + 4l] ≥ 0,

(6)

where auxiliary variable d is binary, and 1 ≤ i < (r − 1), l = 0, 1, 2, 3.
Through the above modeling, we have complete constraints for the linear trail propaga-

tion of Simpira-2. The objective function is to minimize the number of the active Sboxes
for given r-round Simpira-2. With the same way, we can also make the MILP model for
other values of b, such as b = 3, b = 4, b = 6, b = 8. We summarize all results in Table
3 and get tighter bounds for different versions of Simpira-b. Comparing Tables 2 and 3,
there are some differences. In the differential trail, the minimal numbers of active Sboxes
are 80 for 14-round Simpira-3, 120 for 8-round Simpira-8, 145 for 9-round Simpira-8. In
the linear trail, the minimal numbers of active Sboxes are 85 for 14-round Simpira-3, 110
for 8-round Simpira-8, 120 for 9-round Simpira-8. We think the difference may come
from the different modeling methods of the differential and linear trail, where one model
may be tighter than the other, rather than a difference in Simpira’s properties.

Table 3: Lower bounds on the number of active Sboxes of the linear trail of Simpira v2
with b branches

b
Rounds Ref.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 - - - - 25 - - - - - - - - - - [GM16]
5 5 10 25 30 35 40 55 60 65 70 85 90 95 100 Ours

3 - - - - - 25 - - - - - - - - - [GM16]
5 5 5 5 10 30 35 35 40 55 61 70 75 85 92 Ours

4 - - - - 40 - - - - - - - - - - [GM16]
5 5 10 30 40 60 60 65 70 90 100 120 120 125 130 Ours

6 - - - 25 - - - - - - - - - - - [GM16]
5 5 10 30 40 60 70 115 120 130 140 160 - - - Ours

8 - - - 25 - - - - - - - - - - - [GM16]
5 5 10 30 40 60 70 110 120 145 - - - - - Ours

4 Collision Attacks on Reduced Simpira v2

With the MILP model introduced in Sect. 3.2, we derive several truncated differentials
for Simpira-2 and Simpira-4. Based on them, we launch collision attacks via rebound
attacks [MRST09]. Collision attacks on generic Feistel ciphers have been investigated in
quite a few papers [SY11, SEHK12, DW16].
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4.1 Collision Attack on 9-round Simpira-2
We introduce a new 9-round truncated differential of Simpira-2, which is applied in the
collision attack, as shown in Figure 6. The inbound phase happen in round 3 and round 5.
The process is as follows:

1. For each of the 232 possible differences of SMC2
3 , set the difference of state SMC2

5 and
SMC2

3 be equal, i.e. ∆SMC2
5 = ∆SMC2

3 .

2. For each of the 232 possible differences of SSR2
2 , since ∆SMC2

2 = ∆S3, we can get one
pair of values on average that satisfy this trail ∆SSR2

2 → ∆SMC2
3 (∆SSR2

2 → ∆S3 →
∆SSB1

3 → ∆SSR1
3 → ∆SSB2

3 → ∆SSR2
3 → ∆SMC2

3 ), by applying the Super Sbox technique
in Sect. 2.3. In the same way, for each of the 232 possible differences ∆SSR2

4 , we
obtain one pair of values on average that satisfy this differential trail ∆SSR2

4 → ∆SMC2
5

(∆SSR2
4 → ∆S5 → ∆SSB1

5 → ∆SSR1
5 → ∆SSB2

5 → ∆SSR2
5 → ∆SMC2

5 ).

3. From the values at state S3 and S5, we can get the values at SMC2
4 , and then know

all the intermediate state values of round 5. Thus, combined with the values at SMC2
3

and SMC2
5 , we compute the values at S2 and S6. Then check the following equations:

∆[SR ◦ SB ◦ AC ◦ MC ◦ SR ◦ SB(S2)] ?= ∆SSR2
2 . (7)

∆[SR ◦ SB ◦ AC ◦ MC ◦ SR ◦ SB(S6)] ?= ∆SSR2
6 . (8)

If we find a solution for the above two equations, it means that we have found a
pair of the values that satisfies the truncated differential from round 2 to 8. For an
arbitrary triple (∆SSR2

2 ,∆SMC2
3 ,∆SSR2

6 ), the probability that the above two equations
hold is 2−64.

4. As shown in Figure 6, we have:

∆PL = ∆S0 = ∆S2 = ∆SMC2
3 ⊕∆S4 = ∆S4 ⊕∆SMC2

5 = ∆S6 = ∆S8 = ∆CL.

∆PR = ∆SMC2
0 = MC(∆SSR2

0 ). (9)

∆CR = ∆SMC2
8 = MC(∆SSR2

8 ). (10)

According to the Equation (9) and (10), we can get a equivalence relation as follows:

∆SSR2
0 = ∆SSR2

8 ⇔ ∆PR = ∆CR. (11)

The probability that the equation ∆SSR2
0 = ∆SSR2

8 holds is 2−32. Thus, the probability
for a collision between input difference and output difference in this truncated
differential is 2−64 × 2−32 = 2−96.

Degrees of Freedom. The number of values of the triple (∆SSR2
2 ,∆SMC2

3 ,∆SSR2
6 ) is

(232)3 = 296. Thus, we have enough degrees of freedom to obtain a collision, and the time
complexity is 296.

4.2 Collision Attacks on 11-round Simpira-4
A new 11-round truncated differential of Simpira-4 is introduced in Figure 7, in view of
which, we build a collision attack. Here, we consider the output of the hash H(x) based
on Simpira-4 is the leftmost 256 bits.

We denote the input at round i from left to right as SAi , SBi , SCi , SDi , seen in Figure 7.
The 11-round collision attack process is as follows:
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Figure 6: The 9-round collision attack on Simpira-2
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Figure 7: The 11-round collision attack on Simpira-4
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1. For an arbitrary value of the difference ∆SC4 , let the difference ∆SC,MC2
5 = ∆SC4 =

∆SC,MC2
7 .

2. For an arbitrary value of the difference ∆SC,SR2
4 , since the difference ∆SC,MC2

4 = ∆SC5 ,
we apply the Super-Sbox technique in Sect. 2.3, to obtain one pair of values on
average that satisfies the differential trail ∆SC,SR2

4 → ∆SC,MC2
5 (∆SC,SR2

4 → ∆SC5 →
∆SC,SB1

5 → ∆SC,SR1
5 → ∆SC,SB2

5 → ∆SC,SR2
5 → ∆SC,MC2

5 ). In the same way, for an
arbitrary difference of SC,SR2

6 , we can achieve one pair of values on average that
is in content with the differential trail ∆SC,SR2

6 → ∆SC,MC2
7 (∆SC,SR2

6 → ∆SC7 →
∆SC,SB1

7 → ∆SC,SR1
7 → ∆SC,SB2

7 → ∆SC,SR2
7 → ∆SC,MC2

7 ).

3. Let ∆0, ∆1, ∆2 denote the difference value of SC4 , S
C,SR2
4 , SC,SR2

6 , respectively. Ac-
cording to the property of truncated differential, we have:

∆0 = ∆SB1 = ∆SA2 = ∆SC4 = ∆SC,MC2
5 = ∆SA6

= ∆SC6 = ∆SC,MC2
7 = ∆SA8 = ∆SC10 = ∆SB12,

∆1 = ∆SC,SR2
4 = ∆SA,SR2

6 ,

∆2 = ∆SC,SR2
6 = ∆SA,SR2

8 .

Thus, for the difference triple (∆0,∆1,∆2), since we know that ∆SC4 = ∆0 and
∆SC,SR2

4 = ∆1, we deduce a pair of 32-bit values of state SC4 on average with the
differential trail ∆SC4 → ∆SC,SR2

4 (The position of the 32-bit values at state SC4 is on
the active bytes of ∆SC4 ). In the same way, we also achieve a pair of 32-bit values of
SA6 , SC6 and SA8 with the differential trails ∆SA6 → ∆SA,SR2

6 , ∆SC6 → ∆SC,SR2
6 and

∆SA8 → ∆SA,SR2
8 , respectively.

4. There are two steps in the outbound phase.

(a) We guess the value of the unknown bytes at state SC6 at random, then get a
pair of values at state SC6 . According to the values at state SC6 and SC7 , we can
get the values at state SA5 , and deduce the value SA,MC2

5 = SA6 ⊕ SC4 . Let S[j]
denote the j-th byte of state S, then check the following equation:

MC◦SR◦SB◦AC◦MC◦SR◦SB(SA5 )[i] ?= SA6 [i]⊕SC4 [i], where i = 0, 5, 10, 15. (12)

(b) When the Equation (12) holds, we obtain a pair of values at state SA,MC2
5 , then

we guess the value of the unknown bytes at state SC4 randomly. According to
the property of truncated differential trail, we can obtain the value at state SA7 ,
then check the following equation:

MC◦SR◦SB◦AC◦MC◦SR◦SB(SA7 )[i] ?= SA8 [i]⊕SC6 [i], where i = 0, 5, 10, 15. (13)

If the Equations (12) and (13) hold, we have ∆SB1 = ∆SB12, which means that we
have found a pair of the values in content with the 11-round truncated differential.

The probability that Equations (12) and (13) hold is 2−64. Thus, if we guess 232

values of SC4 and SC6 , respectively, we would obtain a collision on average, and the time
complexity is 264.
Degrees of Freedom. The number of values of the triple (∆SC4 ,∆S

C,SR2
4 ,∆SC,SR2

6 ) is
(232)3 = 296. In addition, we can make arbitrary guessing about 2× 96 = 192 bits values
of SC4 and SC6 . Thus, we have the total degrees of freedom (296)3 = 2288.
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5 Quantum Collision Attack on 9-round Simpira-2 without
qRAM

This quantum attack consists of two phases, called inbound and outbound phases. The
inbound phase is like an efficient meet-in-the-middle phase, which uses the truncated
differential to satisfy the low-probability part of the middle of the differential. In the
outbound phase, the matches of the inbound phase are computed backward and forward
to obtain the collision attack on the hash function. In addition, our attack has a special
property that the inbound phases consist of more than one inbound phase.

The core of the quantum collision attack is to apply Grover’s algorithm to the search
space, where the interesting elements are marked by an efficiently computable Boolean
function F . Let us define the function F . We denote the instantiated input-output
difference pair as (∆in,∆out) with the inbound differential. The goal of the inbound phase
of a rebound attack is to generate data pairs respecting the two inbound differentials. For
this two inbound phases, let the input-output difference pair (∆in,∆out) = (∆1

in,∆2
in,∆out),

where (∆1
in,∆out) be the input-output difference pair for the first inbound phase, and

(∆2
in,∆out) be the input-output difference pair for the second inbound phase.
Given a pair (∆1

in,∆out), if there exists one input-output pair (x, x′) and (y, y′) that
satisfies the differential trail (∆1(i)

in ,∆(i)
out) for SSB(i) for each 0 ≤ i ≤ 3, there exist 8 choices

for starting points for each (∆1
in,∆out). We add additional 3-bit input α = (α0, α1, α2) as

inputs of F so that it will take that specify which starting point we choose among 8 choices.
Similarly, for a pair (∆2

in,∆out), We also add additional 3-bit input β = (β0, β1, β2) as
inputs of F . Thus, we define:

F : F32
2 × F32

2 × F32
2 × F3

2 × F3
2 → F2

F fulfils the backward and forward outbound differentials if and only if the starting
point is computed with (∆1

in,∆2
in,∆out;α, β).

Given (∆1
in,∆2

in,∆out;α, β), F (∆1
in,∆2

in,∆out;α, β) is computed in the classical setting
by the following steps:

1. Compute the differential (∆S(i)
3 ,∆SSR2(i)

3 ) for each Super Sbox SSB(i)(0 ≤ i < 4)
from (∆SSR2(i)

2 ,∆SMC(i)
3 ), where ∆SSR2

2 = ∆1
in and ∆SSR2

3 = ∆out.

2. Solve the active Sbox SSB(0) to obtain ∆S(0)
3 , such that

SSB(0)(S(0)
3 ⊕∆S(0)

3 )⊕ SSB(0)(S(0)
3 ) = ∆SSR2(0)

3

If α0 = 0, pick the min(S(0)
3 , S

(0)
3 ⊕∆S(0)

3 ) as the new value for S(0)
3 . Else, pick the

max(S(0)
3 , S

(0)
3 ⊕∆S(0)

3 ) as the new value for S(0)
3 . And in the same way, we can get

S
(1)
3 , S

(2)
3 . For the pair (S(3)

3 , S
(3)
3 ⊕∆S(3)

3 ), we always pick the bigger one as S(3)
3 .

Thus, we obtain a starting point as

S3 = (S(0)
3 , S

(1)
3 , S

(2)
3 , S

(3)
3 ).

3. Compute the differential (∆S(i)
5 ,∆SSR2(i)

5 ) for each Super Sbox SSB(i)(0 ≤ i < 4)
from (∆SSR2(i)

4 ,∆SMC(i)
5 ), where ∆SSR2

4 = ∆2
in and ∆SSR2

5 = ∆out = ∆SSR2
3 .

4. Solve the active Sbox SSB(0) to obtain ∆S(0)
5 , such that

SSB(0)(S(0)
5 ⊕4S(0)

5 )⊕ SSB(0)(S(0)
5 ) = 4SSR2(0)

5
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If β0 = 0, pick the min(S(0)
5 , S

(0)
5 ⊕∆S(0)

5 ) as the new value for S(0)
5 . Else, pick the

max(S(0)
5 , S

(0)
5 ⊕∆S(0)

5 ) as the new value for S(0)
5 . And in the same way, we can get

S
(1)
5 , S

(2)
5 . For the pair (S(3)

5 , S
(3)
5 ⊕∆S(3)

5 ), we always pick the bigger one as S(3)
5 .

Thus, we obtain a starting point as

S5 = (S(0)
5 , S

(1)
5 , S

(2)
5 , S

(3)
5 ).

5. According to the values S3 and S5, we can compute S′3 and S′5(S′3 = S3 ⊕ ∆S3,
S′5 = S5 ⊕∆S5), then calculate all the values of round 5. Thus, combined with the
values (SMC2

5 , S′MC2
5 ), we compute the values at (S6, S

′
6) and (SSR2

6 , S′SR2
6 ). Then check

whether the equation SSR2
6 ⊕ S′SR2

6 = ∆out holds. If not, return to Step 3.

6. Similarly, we compute the values at (S2, S
′
2) and (SSR2

2 , S′SR2
2 ). And then check

whether the equation SSR2
2 ⊕ S′SR2

2 = ∆1
in holds. If not, return to Step 1.

7. Note that now we have a corrected path for the starting points. If the starting point
(S3, S3⊕∆S3) obtained in step 2 respects the forward outbound differential, and the
starting point (S3, S3 ⊕∆S3) obtained in step 4 respects the backward outbound
differential, then F (∆1

in,∆2
in,∆out;α, β) returns 1; otherwise it returns 0.

Therefore, by applying Grover’s search with the quantum oracle UF which maps |∆1
in,∆2

in,
∆out;α, β〉|y〉 to |∆1

in,∆2
in,∆out;α, β〉|y ⊕ F (∆1

in,∆2
in,∆out;α, β)〉 , we can find a collision

with around π
4 ·
√

2102 queries. Next, in order to estimate the overall complexity, we need
to be clear on the complexity caused by UF .

5.1 Implementation of the Quantum Oracle UF

Similar to [HS20, DSS+20], we need some additional functions to implement UF . As
shown in Figure 3, we define a function G(i) which marks the values of X(i)

1 to solutions
(compatible data pairs) for the given differential (∆X(i)

1 ,∆Y (i)
2 ) of the Super Sbox SSB(i).

The implementation of the quantum oracle UG(i) of G(i)(i = 0, 1, 2) is presented in
Algorithm 1. And the implementation of the quantum oracle UG(3) of G(3) is presented in
Algorithm 2. Finally, by using UG(i) , the oracle UF can be constructed which is presented
in Algorithm 3.

5.2 Complexity Analysis.
First of all, we make several assumptions on our quantum collision attack.

• The complexity of the computation of 9-round Simpira-2 is approximated by 16×
2× 9 = 288 Sbox computations.

• The complexity of one access to the qRAM storing a table is equivalent to one Sbox
computation.

• The implementation of one inverse Sbox is about one Sbox.

• Uncomputing is taken into account.

Complexity of G(i). Applying Grover algorithm to G(i) given (∆X(i)
1 ,∆Y (i)

2 , αi) to
find a 32-bit value X(i)

1 requires π
4 ×
√

232 ≈ 215.65 queries to the oracle UG(i) . And the
UG(i) need 16 Sbox evaluations. Thus, the overall complexity is 2×215.65×16× 1

288 ≈ 212.45

9-round Simpira-2 computations.
Complexity of UF . In Algorithm 3, the first for loop needs 4 calls of G(i), the second

for loop also needs 4 calls of G(i). we need to compute backward for 2 rounds and forward
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Algorithm 1: Implementation of UG(i)

Input: |∆X(i)
1 ,∆Y (i)

2 , αi;X(i)
1 〉|y〉

Output: |∆X(i)
1 ,∆Y (i)

2 , αi;X(i)
1 〉|y ⊕G(i)(∆X(i)

1 ,∆Y (i)
2 , αi;X(i)

1 )〉
1 if αi = 0 then
2 Set X(i)

1 ← min(X(i)
1 , X

(i)
1 ⊕∆X(i)

1 ).
3 Compute Y (i)

2 and Y
′(i)

2 from X
(i)
1 and X(i)

1 ⊕∆X(i)
1 .

4 if SSB(i)(X(i)
1 )⊕ SSB(i)(X(i)

1 ⊕∆X(i)
1 ) = ∆Y (i)

2 then
5 return |∆X(i)

1 ,∆Y (i)
2 , X

(i)
1 , αi〉|y ⊕ 1〉

6 else
7 return |∆X(i)

1 ,∆Y (i)
2 , X

(i)
1 , αi〉|y〉

8 end
9 else

10 Set X(i)
1 ← max(X(i)

1 , X
(i)
1 ⊕∆X(i)

1 ). Compute Y (i)
2 and Y

′(i)
2 from X

(i)
1 and

X
(i)
1 ⊕∆X(i)

1
11 if SSB(i)(X(i)

1 )⊕ SSB(i)(X(i)
1 ⊕∆X(i)

1 ) = ∆Y (i)
2 then

12 return |∆X(i)
1 ,∆Y (i)

2 , αi;X(i)
1 〉|y ⊕ 1〉

13 else
14 return |∆X(i)

1 ,∆Y (i)
2 , αi;X(i)

1 〉|y〉
15 end
16 end

Algorithm 2: Implementation of UG(3)

Input: |∆X(3)
1 ,∆Y (3)

2 ;X(3)
1 〉|y〉

Output: |∆X(3)
1 ,∆Y (3)

2 ;X(3)
1 〉|y ⊕G(3)(∆X(3)

1 ,∆Y (3)
2 ;X(3)

1 )〉
1 Set X(3)

1 ← max(X(3)
1 , X

(3)
1 ⊕∆X(3)

1 ).
2 Compute Y (3)

2 and Y
′(3)

2 from X
(3)
1 and X(3)

1 ⊕∆X(3)
1 .

3 if SSB(3)(X(3)
1 )⊕ SSB(3)(X(3)

1 ⊕∆X(3)
1 ) = ∆Y (3)

2 then
4 return |∆X(3)

1 ,∆Y (3)
2 ;X(3)

1 〉|y ⊕ 1〉
5 else
6 return |∆X(3)

1 ,∆Y (3)
2 ;X(3)

1 〉|y〉
7 end
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Algorithm 3: Implementation of UF
Input: |∆1

in,∆2
in,∆out;α, β〉|y〉, with α = (α0, α1, α2), β = (β0, β1, β2) ∈ F3

2
Output: |∆1

in,∆2
in,∆out;α, β〉|y ⊕ F (∆1

in,∆2
in,∆out;α, β)〉

1 for i ∈ (0, 1, 2) do
2 Compute the differential (∆S(i)

3 ,∆SSR2(i)
3 ) for each Super Sbox SSB(i) from

(∆SSR2(i)
2 ,∆SMC(i)

3 ), where ∆SSR2(i)
2 = ∆1

in and ∆SSR2(i)
3 = ∆out.

3 Run Grover search on the function G(i)(∆S(i)
3 ,4SSR2(i)

3 , αi; ·) : F 32
2 → F2

4 Let S(i)
3 be the output.

5 end
6 Compute the differential (∆S(3)

3 ,∆SSR2(3)
3 ) for each Super Sbox SSB(3) from

(∆SSR2(3)
2 ,∆SMC(3)

3 ), where ∆SSR2(3)
2 = ∆1

in and ∆SSR2(3)
3 = ∆out.

7 Run Grover search on the function G(3)(∆S(3)
3 ,4SSR2(3)

3 ; ·) : F 32
2 → F2

8 Let S(3)
3 be the output.

9 for i ∈ (0, 1, 2) do
10 Compute the differential (∆S(i)

5 ,∆SSR2(i)
5 ) for each Super Sbox SSB(i) from

(∆SSR2(i)
4 ,∆SMC(i)

5 ), where ∆SSR2(i)
4 = ∆1

in and ∆SSR2(i)
5 = ∆out.

11 Run Grover search on the function G(i)(∆S(i)
5 ,∆SSR2(i)

5 , βi; ·) : F 32
2 → F2

12 Let S(i)
5 be the output.

13 end
14 Compute the differential (∆S(3)

5 ,∆SSR2(3)
5 ) for each Super Sbox SSB(3) from

(∆SSR2(3)
4 ,∆SMC(3)

5 ), where ∆SSR2(3)
4 = ∆1

in and ∆SSR2(3)
5 = ∆out.

15 Run Grover search on the function G(3)(∆S(3)
5 ,∆SSR2(3)

5 ; ·) : F 32
2 → F2

16 Let S(3)
5 be the output. Set S3 ← (S(0)

3 , S
(1)
3 , S

(2)
3 , S

(3)
3 ) and

S5 ← (S(0)
5 , S

(1)
5 , S

(2)
5 , S

(3)
5 )

17 Set S′3 ← S3 ⊕∆S3 and S′5 ← S5 ⊕∆S5
18 Compute (S4, S

′
4) from values (S3, S

′
3) and (S5, S

′
5)

19 Compute (S2, S
′
2) from values (S3, S

′
3) and (S4, S

′
4)

20 Compute (S6, S
′
6) from values (S4, S

′
4) and (S5, S

′
5)

21 Compute (SSR2
2 , S′SR2

2 ) from values (S2, S
′
2)

22 Compute (SSR2
6 , S′SR2

6 ) from values (S6, S
′
6)

23 if SSR2
2 ⊕ S′SR2

2 = ∆1
in and SSR2

6 ⊕ S′SR2
6 = ∆out then

24 set 1-bit sign s0 = 1
25 else
26 s0 = 0
27 end
28 if (S′SR2

2 , S′SR2
2 , SSR2

6 , S′SR2
6 ) fulfills the outbound differential and s0 = 1 then

29 return |∆1
in,∆2

in,∆out;α, β〉|y ⊕ 1〉
30 else
31 return |∆1

in,∆2
in,∆out;α, β〉|y〉

32 end
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⊕
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256-bit hash

Figure 8: Differential for collision on the last two branches without the last network twist

for 2 rounds to obtain (SSR2
2 , SSR2

6 ), and we need to compute backward for 2 rounds and
forward for 2 rounds to fulfills the outbound differential. Therefore, we need 16×4×2×6

288 = 8
3

9-round Simpira-2 computations. The overall complexity of UF is 8
3 + 8× 212.45 ≈ 215.45

9-round Simpira-2 computations.
Complexity to find a collision. In order to identify a 102-bit value (∆1

in,∆2
in,∆out, α, β) ∈

F 32
2 × F 32

2 × F 32
2 × F 3

2 × F 3
2 with Grover’s search such that F (∆1

in,∆2
in,∆out;α, β) = 1,

it requires π
4 ·
√

2102 queries to UF . Therefore, the complexity to find a collision is
π
4 ·
√

2102 × 215.45 = 266.1 9-round Simpira-2 computations.

6 Quantum Collision Attack on 11-round Simpira-4 with-
out qRAM

The quantum attack on Simpira-4 is based on the differential trails shown in Figure 7.
We also define a similar quantum oracle U ′F as defined in Algorithm 3 and the same G(i)
as Algorithm 1. Then, we apply Grover algorithm to the quantum oracle U ′F which is
constructed without qRAM with similar techniques shown in previous sections.

Complexity Analysis. Here the complexity of the computation of 11-round Simpira-4
is approximated by 16× 2× 2× 11 = 704 Sbox computations.

Complexity of G(i). Applying Grover algorithm to G(i) given (∆X(i)
1 ,∆Y (i)

2 , αi) to
find a 32-bit value X(i)

1 requires π
4 ×
√

232 ≈ 215.65 queries to the oracle UG(i) , and the
UG(i) need 16 Sbox evaluations. Thus, the overall complexity is 2×215.65×16× 1

704 ≈ 211.2

11-round Simpira-4 computations.
Complexity of U ′F . Obviously, in the Algorithm U ′F , the complexity of the analysis is

similar to UF in Section 5. The overall complexity of UF depends largely on the complexity
of G(i). Since the Algorithm U ′F needs 16 calls to G(i), the total complexity is about
16× 211.2 = 215.2 11-round Simpira-4 computations.

Complexity to find a collision. By applying Grover’s search with the quantum
oracle U ′F , we can find a collision with around π

4 ·
√

270 queries to U ′F . Therefore, the
complexity to find a collision is π4 ·

√
270×215.2 ≈ 249.85 11-round Simpira-4 computations.
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7 Collision Attacks on Other Variants of Simpira-4

The designers of Simpira commented that “To match the intended application, padding
of the input and/or truncation of the output of Simpira may be required”. Thus, it makes
sense to consider different truncated versions of the hash construction. For Simpira-4, the
four branches are denoted as (A,B,C,D). “Collision [A,B]” means the collision happens
in branch A and B. In Section 4.2, we introduce a differential trail as shown in Figure 7.
In this section, we will discuss the collision attacks on different truncations of the output
of Simpira-4 plugged in the Davies-Meyer construction. The details of each case are as
follows:

• Collision on branches [B,C]. First the equation ∆SB1 = ∆SB12 holds with
probability 2−64, according to the property of truncated differential trail, we have
the following two equations:

∆SC1 = ∆SA,MC2
2 = MC(∆SA,SR2

2 ),
∆SC12 = ∆SC,MC2

10 = MC(∆SC,SR2
10 ).

Thus, the equation ∆SC1 = ∆SC11 holds with probability 2−32, and we get a 256-bit
collision on branches [B,C] with probability 2−64 × 2−32 = 2−96. Then we get the
complexity of this collision attack: In the classical setting, the time complexity is
296; In the quantum setting, the time complexity is 265.85.

• Collision on branches [A,C]. First the equation ∆SA1 = ∆SA12 holds with
probability 2−64. Similar to the collision on branches [B,C], We obtain a 256-bit
collision on branches [A,C] with probability 2−64 × 2−32 = 2−96. The complexity of
this collision attack, in the classical setting, is 296, and in the quantum setting, is
265.85.

• Collision on branches [A,D]. First the equation ∆SA1 = ∆SA12 holds with
probability 2−64. Since the Sboxes of the states ∆SD1 and ∆SD12 are fully active, the
equation ∆SD1 = ∆SD12 holds with 2−128. Thus, we can obtain a 256-bit collision on
branches [A,D] probability 2−64 × 2−128 = 2−192. In classical setting, the collision
attack will need 2192 which is weaker than birthday attack. However, in quantum
setting, the time complexity is about 2113.85 without qRAM and classical memory,
which is better than the quantum version parallel rho algorithm [HS20]. For CNS
algorithm [CNS17], it needs 2102.4 time and 251.2 classical memory.

• Collision on branches [B,D]. This case is similar to the collision on branches
[A,D]. We can obtain a 256-bit Collision [B,D] with probability 2−64×2−128 = 2−192.
The classical collision attack is invalid. The quantum collision attack needs a time
complexity of 2113.85 without qRAM.

• Collision on branches [C,D]. In this case, the probability to obtain a 256-bit
collision is 2−64 × 2−32 × 2−128 = 2−224. Both the classical collision attack and
quantum collision are weaker than generic attacks.

In order to obtain a better differential trail for the collision attack on the last two
branches, we make a slight change to Figure 7 by adding one round before first round and
peeling off its last round. Then, we obtain a new 11-round differential trail in Figure 8.
Obviously, the equation ∆SC0 = ∆SC11 holds with 2−64 following the analysis in Section
4.2. According to the property of truncated differential trail, we have the following two
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equations:

∆SD11 = ∆SC,MC2
10 = MC(∆SC,SR2

10 ),
∆SD0 = ∆SC,MC2

0 ⊕∆SC1
= ∆SC,MC2

0 ⊕∆SA,MC2
2

= MC(∆SC,SR2
0 )⊕ MC(∆SA,SR2

2 )
= MC(∆SC,SR2

0 ⊕∆SA,SR2
2 ).

Thus, the equation ∆SD0 = ∆SD11 holds with 2−32, and we get a 256-bit hash collision of
the output [C,D] branches with the probability of 2−64 × 2−32 = 2−96. The probability is
2−64× 2−32 = 2−96. The time complexity to find the collision is 296 in the classical setting
and 265.85 in the quantum setting (without qRAM).

8 Discussion and Conclusion
In this paper, we provided cryptanalytic results on Simpira v2, which is an AES-based
permutation proposed by Gueron and Mouha at ASIACRYPT 2016. We study the MILP
model to search the minimum of the active Sboxes for differential and linear trail, and give
new constraints on the Feistel structure of Simpira v2, which eliminate some impossible
truncated trails due to internal contradiction. With the updated MILP model, we renovate
the low bound of the number of active Sboxes for Simpira v2. Furthermore, some new
truncated differentials for Simpira-2 and Simpira-4 are presented, which are adopted
to construct a series collision attacks on the both reduced versions of Simpira v2 with
Davies-Meyer hashing mode in both classical and quantum setting.

Recently, Gueron and Mouha suggested a post-quantum public key algorithm based
on SPHINCS [BHH+15] and Simpira v2, named as SPHINCS-Simpira [GM17]. The
security of SPHINCS [BHH+15] is based on the preimage-resistance of its internal hash
function. Hence, our collision attacks do not affect the security of SPHINCS-Simpira.
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