62 research outputs found

    Mixed Integer Programming Models for Finite Automaton and Its Application to Additive Differential Patterns of Exclusive-Or

    Get PDF
    Inspired by Fu et al. work on modeling the exclusive-or differential property of the modulo addition as an mixed-integer programming problem, we propose a method with which any finite automaton can be formulated as an mixed-integer programming model. Using this method, we show how to construct a mixed integer programming model whose feasible region is the set of all differential patterns (α,β,γ)(\alpha, \beta, \gamma)\u27s, such that adp⊕(α,β→γ)=Prx,y[((x+α)⊕(y+β))−(x⊕y)=γ]>0{\rm adp}^\oplus(\alpha, \beta \rightarrow \gamma) = {\rm Pr}_{x,y}[((x + \alpha) \oplus (y + \beta))-(x \oplus y) = \gamma] > 0. We expect that this may be useful in automatic differential analysis with additive difference

    Improved quantum attack on Type-1 Generalized Feistel Schemes and Its application to CAST-256

    Get PDF
    Generalized Feistel Schemes (GFS) are important components of symmetric ciphers, which have been extensively researched in classical setting. However, the security evaluations of GFS in quantum setting are rather scanty. In this paper, we give more improved polynomial-time quantum distinguishers on Type-1 GFS in quantum chosen-plaintext attack (qCPA) setting and quantum chosen-ciphertext attack (qCCA) setting. In qCPA setting, we give new quantum polynomial-time distinguishers on (3d−3)(3d-3)-round Type-1 GFS with branches d≥3d\geq3, which gain d−2d-2 more rounds than the previous distinguishers. Hence, we could get better key-recovery attacks, whose time complexities gain a factor of 2(d−2)n22^{\frac{(d-2)n}{2}}. In qCCA setting, we get (3d−3)(3d-3)-round quantum distinguishers on Type-1 GFS, which gain d−1d-1 more rounds than the previous distinguishers. In addition, we give some quantum attacks on CAST-256 block cipher. We find 12-round and 13-round polynomial-time quantum distinguishers in qCPA and qCCA settings, respectively, while the best previous one is only 7 rounds. Hence, we could derive quantum key-recovery attack on 19-round CAST-256. While the best previous quantum key-recovery attack is on 16 rounds. When comparing our quantum attacks with classical attacks, our result also reaches 16 rounds on CAST-256 with 128-bit key under a competitive complexity

    A Tweak for a PRF Mode of a Compression Function and Its Applications

    Get PDF
    We discuss a tweak for the domain extension called Merkle-Damgård with Permutation (MDP), which was presented at ASIACRYPT 2007. We first show that MDP may produce multiple independent pseudorandom functions (PRFs) using a single secret key and multiple permutations if the underlying compression function is a PRF against related-key attacks with respect to the permutations. Using this result, we then construct a hash-function-based MAC function, which we call FMAC, using a compression function as its underlying primitive. We also present a scheme to extend FMAC so as to take as input a vector of strings

    Fully Collision-Resistant Chameleon-Hashes from Simpler and Post-Quantum Assumptions

    Get PDF
    Chameleon-hashes are collision-resistant hash-functions parametrized by a public key. If the corresponding secret key is known, arbitrary collisions for the hash can be found. Recently, Derler et al. (PKC \u2720) introduced the notion of fully collision-resistant chameleon-hashes. Full collision-resistance requires the intractability of finding collisions, even with full-adaptive access to a collision-finding oracle. Their construction combines simulation-sound extractable (SSE) NIZKs with perfectly correct IND-CPA secure public-key encryption (PKE) schemes. We show that, instead of perfectly correct PKE, non-interactive commitment schemes are sufficient. For the first time, this gives rise to efficient instantiations from plausible post-quantum assumptions and thus candidates of chameleon-hashes with strong collision-resistance guarantees and long-term security guarantees. On the more theoretical side, our results relax the requirement to not being dependent on public-key encryption

    A new method for Searching Optimal Differential and Linear Trails in ARX Ciphers

    Get PDF
    In this paper, we propose an automatic tool to search for optimal differential and linear trails in ARX ciphers. It\u27s shown that a modulo addition can be divided into sequential small modulo additions with carry bit, which turns an ARX cipher into an S-box-like cipher. From this insight, we introduce the concepts of carry-bit-dependent difference distribution table (CDDT) and carry-bit-dependent linear approximation table (CLAT). Based on them, we give efficient methods to trace all possible output differences and linear masks of a big modulo addition, with returning their differential probabilities and linear correlations simultaneously. Then an adapted Matsui\u27s algorithm is introduced, which can find the optimal differential and linear trails in ARX ciphers. Besides, the superiority of our tool\u27s potency is also confirmed by experimental results for round-reduced versions of HIGHT and SPECK. More specifically, we find the optimal differential trails for up to 10 rounds of HIGHT, reported for the first time. We also find the optimal differential trails for 10, 12, 16, 8 and 8 rounds of SPECK32/48/64/96/128, and report the provably optimal differential trails for SPECK48 and SPECK64 for the first time. The optimal linear trails for up to 9 rounds of HIGHT are reported for the first time, and the optimal linear trails for 22, 13, 15, 9 and 9 rounds of SPECK32/48/64/96/128 are also found respectively. These results evaluate the security of HIGHT and SPECK against differential and linear cryptanalysis. Also, our tool is useful to estimate the security in the design of ARX ciphers

    Approximate Divisor Multiples -- Factoring with Only a Third of the Secret CRT-Exponents

    Get PDF
    We address Partial Key Exposure attacks on CRT-RSA on secret exponents dp,dqd_p, d_q with small public exponent ee. For constant ee it is known that the knowledge of half of the bits of one of dp,dqd_p, d_q suffices to factor the RSA modulus NN by Coppersmith\u27s famous {\em factoring with a hint} result. We extend this setting to non-constant ee. Somewhat surprisingly, our attack shows that RSA with ee of size N112N^{\frac 1 {12}} is most vulnerable to Partial Key Exposure, since in this case only a third of the bits of both dp,dqd_p, d_q suffices to factor NN in polynomial time, knowing either most significant bits (MSB) or least significant bits (LSB). Let edp=1+k(p−1)ed_p = 1 + k(p-1) and edq=1+ℓ(q−1)ed_q = 1 + \ell(q-1). On the technical side, we find the factorization of NN in a novel two-step approach. In a first step we recover kk and ℓ\ell in polynomial time, in the MSB case completely elementary and in the LSB case using Coppersmith\u27s lattice-based method. We then obtain the prime factorization of NN by computing the root of a univariate polynomial modulo kpkp for our known kk. This can be seen as an extension of Howgrave-Graham\u27s {\em approximate divisor} algorithm to the case of {\em approximate divisor multiples} for some known multiple kk of an unknown divisor pp of NN. The point of {\em approximate divisor multiples} is that the unknown that is recoverable in polynomial time grows linearly with the size of the multiple kk. Our resulting Partial Key Exposure attack with known MSBs is completely rigorous, whereas in the LSB case we rely on a standard Coppersmith-type heuristic. We experimentally verify our heuristic, thereby showing that in practice we reach our asymptotic bounds already using small lattice dimensions. Thus, our attack is highly efficient

    SPHINCS-Simpira: Fast Stateless Hash-based Signatures with Post-quantum Security

    Get PDF
    We introduce SPHINCS-Simpira, which is a variant of the SPHINCS signature scheme with Simpira as a building block. SPHINCS was proposed by Bernstein et al. at EUROCRYPT 2015 as a hash-based signature scheme with post-quantum security. At ASIACRYPT 2016, Gueron and Mouha introduced the Simpira family of cryptographic permutations, which delivers high throughput on modern 64-bit processors by using only one building block: the AES round function. The Simpira family claims security against structural distinguishers with a complexity up to 2^128 using classical computers. In this document, we explain why the same claim can be made against quantum computers as well. Although Simpira follows a very conservative design strategy, our benchmarks show that SPHINCS-Simpira provides a 1.5x speed-up for key generation, a 1.4x speed-up for signing 59-byte messages, and a 2.0x speed-up for verifying 59-byte messages compared to the originally proposed SPHINCS-256

    Automatic Verification of Differential Characteristics: Application to Reduced Gimli (Full Version)

    Get PDF
    Since Keccak was selected as the SHA-3 standard, more and more permutation-based primitives have been proposed. Different from block ciphers, there is no round key in the underlying permutation for permutation-based primitives. Therefore, there is a higher risk for a differential characteristic of the underlying permutation to become incompatible when considering the dependency of difference transitions over different rounds. However, in most of the MILP or SAT based models to search for differential characteristics, only the difference transitions are involved and are treated as independent in different rounds, which may cause that an invalid one is found for the underlying permutation. To overcome this obstacle, we are motivated to design a model which automatically avoids the inconsistency in the search for differential characteristics. Our technique is to involve both the difference transitions and value transitions in the constructed model. Such an idea is inspired by the algorithm to find SHA-2 characteristics as proposed by Mendel et al. in ASIACRYPT 2011, where the differential characteristic and the conforming message pair are simultaneously searched. As a first attempt, our new technique will be applied to the Gimli permutation, which was proposed in CHES 2017. As a result, we reveal that some existing differential characteristics of reduced Gimli are indeed incompatible, one of which is found in the Gimli document. In addition, since only the permutation is analyzed in the Gimli document, we are lead to carry out a comprehensive study, covering the proposed hash scheme and the authenticated encryption (AE) scheme specified for Gimli, which has become a second round candidate of the NIST lightweight cryptography standardization process. For the hash scheme, a semi-free-start (SFS) collision attack can reach up to 8 rounds starting from an intermediate round. For the AE scheme, a state recovery attack is demonstrated to achieve up to 9 rounds. It should be emphasized that our analysis does not threaten the security of Gimli

    Notes on Small Private Key Attacks on Common Prime RSA

    Full text link
    We point out critical deficiencies in lattice-based cryptanalysis of common prime RSA presented in ``Remarks on the cryptanalysis of common prime RSA for IoT constrained low power devices'' [Information Sciences, 538 (2020) 54--68]. To rectify these flaws, we carefully scrutinize the relevant parameters involved in the analysis during solving a specific trivariate integer polynomial equation. Additionally, we offer a synthesized attack illustration of small private key attacks on common prime RSA.Comment: 15 pages, 1 figur

    Practical Zero-Knowledge Arguments from Structured Reference Strings

    Get PDF
    Zero-knowledge proofs have become an important tool for addressing privacy and scalability concerns in cryptographic protocols. For zero-knowledge proofs used in blockchain applications, it is desirable to have small proof sizes and fast verification. Yet by design, existing constructions with these properties such as zk-SNARKs also have a secret trapdoor embedded in a relation dependent structured reference string (SRS). Knowledge of this trapdoor suffices to break the security of these proofs. The SRSs required by zero-knowledge proofs are usually constructed with multiparty computation protocols, but the resulting parameters are specific to each individual circuit. In this thesis, we propose a model for constructing zero-knowledge arguments (i.e. zero-knowledge proofs with computational soundness) in which the generation of the SRS is directly considered in the security analysis. In our model the same SRS can be used across multiple applications. Further, the model is updatable i.e. users can update the universal SRS and the SRS is considered secure provided at least one of these users is honest. We propose two zero-knowledge arguments with updatable and universal SRSs, as well as a third which is neither updatable nor universal, but which through similar techniques achieves simulation extractability. The proposed arguments are practical, with proof sizes never more than a constant number of group elements. Verification for two of our constructions consist of a small number of pairing operations. For our other construction, which has the desirable property of a linear sized updatable and universal SRS, we describe efficient batching techniques so that verification is fast in the amortised setting
    • …
    corecore