51,233 research outputs found

    Advances in Bit Width Selection Methodology

    Get PDF
    We describe a method for the formal determination of signal bit width in fixed points VLSI implementations of signal processing algorithms containin- g loop nests. The main advance of this paper lies in the fact that we use results of the (max,+) algebraic theory to find the integral bit width of algorithms containing loop nests whose bound parameters are not statically known. Combined with recent results on fractional bit width determination, the results of this paper can be used for 1-dimensional systolic-like arrays implementing linear signal processing algorithms. Although they are presented in the context of a specific high level design methodology (based on systems of affine recurrence equations), the results of this work can be used in many high level design environments

    A binary neural k-nearest neighbour technique

    Get PDF
    K-Nearest Neighbour (k-NN) is a widely used technique for classifying and clustering data. K-NN is effective but is often criticised for its polynomial run-time growth as k-NN calculates the distance to every other record in the data set for each record in turn. This paper evaluates a novel k-NN classifier with linear growth and faster run-time built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and real-valued data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations

    ADEPOS: Anomaly Detection based Power Saving for Predictive Maintenance using Edge Computing

    Full text link
    In industry 4.0, predictive maintenance(PM) is one of the most important applications pertaining to the Internet of Things(IoT). Machine learning is used to predict the possible failure of a machine before the actual event occurs. However, the main challenges in PM are (a) lack of enough data from failing machines, and (b) paucity of power and bandwidth to transmit sensor data to cloud throughout the lifetime of the machine. Alternatively, edge computing approaches reduce data transmission and consume low energy. In this paper, we propose Anomaly Detection based Power Saving(ADEPOS) scheme using approximate computing through the lifetime of the machine. In the beginning of the machines life, low accuracy computations are used when the machine is healthy. However, on the detection of anomalies, as time progresses, the system is switched to higher accuracy modes. We show using the NASA bearing dataset that using ADEPOS, we need 8.8X less neurons on average and based on post-layout results, the resultant energy savings are 6.4 to 6.65XComment: Submitted to ASP-DAC 2019, Japa
    • …
    corecore