4,224,102 research outputs found
Quantum MHV diagrams
Over the past two years, the use of on-shell techniques has deepened our understanding of the S-matrix of gauge theories and led to the calculation of many new scattering amplitudes. In these notes we review a particular on-shell method developed recently, the quantum MHV diagrams, and discuss applications to one-loop amplitudes. Furthermore, we briefly discuss the application of D-dimensional generalised unitarity to the calculation of scattering amplitudes in non-supersymmetric Yang-Mills
Advances in leishmaniasis.
Governed by parasite and host factors and immunoinflammatory responses, the clinical spectrum of leishmaniasis encompasses subclinical (inapparent), localised (skin lesions), and disseminated infection (cutaneous, mucosal, or visceral). Symptomatic disease is subacute or chronic and diverse in presentation and outcome. Clinical characteristics vary further by endemic region. Despite T-cell-dependent immune responses, which produce asymptomatic and self-healing infection, or appropriate treatment, intracellular infection is probably life-long since targeted cells (tissue macrophages) allow residual parasites to persist. There is an epidemic of cutaneous leishmaniasis in Afghanistan and Pakistan and of visceral infection in India and Sudan. Diagnosis relies on visualising parasites in tissue or serology; culture and detection of parasite DNA are useful in the laboratory. Pentavalent antimony is the conventional treatment; however, resistance of visceral infection in India has spawned new treatment approaches--amphotericin B and its lipid formulations, injectable paromomycin, and oral miltefosine. Despite tangible advances in diagnosis, treatment, and basic scientific research, leishmaniasis is embedded in poverty and neglected. Current obstacles to realistic prevention and proper management include inadequate vector (sandfly) control, no vaccine, and insufficient access to or impetus for developing affordable new drugs
Recommended from our members
Chess endgame knowledge advances
This review of recent developments starts with the publication of Harold van der Heijden's Study Database Edition IV, John Nunn's second trilogy on the endgame, and a range of endgame tables (EGTs) to the DTC, DTZ and DTZ50 metrics. It then summarises data-mining work by Eiko Bleicher and Guy Haworth in 2010. This used CQL and pgn2fen to find some 3,000 EGT-faulted studies in the database above, and the Type A (value-critical) and Type B-DTM (DTM-depth-critical) zugzwangs in the mainlines of those studies. The same technique was used to mine Chessbase's BIG DATABASE 2010 to identify Type A/B zugzwangs, and to identify the pattern of value-concession and DTM-depth concession in sub-7-man play
Advances in Quantum Teleportation
Quantum teleportation is one of the most important protocols in quantum
information. By exploiting the physical resource of entanglement, quantum
teleportation serves as a key primitive in a variety of quantum information
tasks and represents an important building block for quantum technologies, with
a pivotal role in the continuing progress of quantum communication, quantum
computing and quantum networks. Here we review the basic theoretical ideas
behind quantum teleportation and its variant protocols. We focus on the main
experiments, together with the technical advantages and disadvantages
associated with the use of the various technologies, from photonic qubits and
optical modes to atomic ensembles, trapped atoms, and solid-state systems.
Analysing the current state-of-the-art, we finish by discussing open issues,
challenges and potential future implementations.Comment: Nature Photonics Review. Comments are welcome. This is a
slightly-expanded arXiv version (14 pages, 5 figure, 1 table
Advances on CMOS image sensors
This paper offers an introduction to the technological advances of image sensors designed using
complementary metal–oxide–semiconductor (CMOS) processes along the last decades. We review
some of those technological advances and examine potential disruptive growth directions for CMOS
image sensors and proposed ways to achieve them. Those advances include breakthroughs on
image quality such as resolution, capture speed, light sensitivity and color detection and advances on
the computational imaging. The current trend is to push the innovation efforts even further as the
market requires higher resolution, higher speed, lower power consumption and, mainly, lower cost
sensors. Although CMOS image sensors are currently used in several different applications from
consumer to defense to medical diagnosis, product differentiation is becoming both a requirement and
a difficult goal for any image sensor manufacturer. The unique properties of CMOS process allows the
integration of several signal processing techniques and are driving the impressive advancement of the
computational imaging. With this paper, we offer a very comprehensive review of methods,
techniques, designs and fabrication of CMOS image sensors that have impacted or might will impact
the images sensor applications and markets
Recent advances in neutrino astrophysics
Neutrinos are produced by a variety of sources that comprise our Sun,
explosive environments such as core-collapse supernovae, the Earth and the
Early Universe. The precise origin of the recently discovered ultra-high energy
neutrinos is to be determined yet. These weakly interacting particles give us
information on their sources, although the neutrino fluxes can be modified when
neutrinos traverse an astrophysical environment. Here we highlight recent
advances in neutrino astrophysics and emphasise the important progress in our
understanding of neutrino flavour conversion in media.Comment: Proceedings for the Symposium "Frontiers of Fundamental Physics
2014", July 15-18, Marseille, 8 pages, 1 figur
- …
