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Abstract

Over the past two years, the use of on-shell techniques has deepened our
understanding of the S-matrix of gauge theories and led to the calculation
of many new scattering amplitudes. In these notes we review a particular
on-shell method developed recently, the quantum MHV diagrams, and dis-
cuss applications to one-loop amplitudes. Furthermore, we briefly discuss
the application of D-dimensional generalised unitarity to the calculation of
scattering amplitudes in non-supersymmetric Yang-Mills.
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1 Introduction

Recently, remarkable progress has been made in understanding the struc-
ture of the S-matrix of four-dimensional gauge theories. This progress was
prompted by Witten’s proposal [1] of a new duality between N =4 super-
symmetric Yang-Mills (SYM) and the topological open string B-model with
target space the Calabi-Yau supermanifold CP3|4, a supersymmetric version
of Penrose’s twistor space. In contrast to usual dualities, this novel duality
relates two weakly-coupled theories, and as such it can in principle be tested
by explicit computations on both sides.

One of the striking results of Witten’s analysis is the understanding of
the remarkable simplicity of scattering amplitudes in Yang-Mills and gravity
– simplicity which is completely obscure in computations using textbook
techniques – in terms of the geometry of twistor space. More precisely, Witten
[1] observed that tree-level scattering amplitudes, when Fourier transformed
to twistor space, localise on algebraic curves in twistor space. For the simplest
case of the maximally helicity violating (MHV) amplitude, the curve is just
a (complex) line.

The simple geometrical structure in twistor space of the amplitudes was
also the root of further important developments of new efficient tools to cal-
culate amplitudes. In [2], Cachazo, Svrček and Witten (CSW) proposed a
novel perturbative expansion for amplitudes in YM, where the MHV ampli-
tudes are lifted to vertices, and joined by scalar propagators in order to form
amplitudes with an increasing number of negative helicity gluons. At tree
level, numerous successful applications of the MHV diagram method have
been carried out so far [3]– [10]. An elegant proof of the method at tree
level was presented in [11] based on the analyticity properties of the scatter-
ing amplitudes. Later, this method was shown to be applicable to one-loop
amplitudes in supersymmetric [12–14] and non-supersymmetric theories [15],
where a new infinite series of amplitudes in pure YM was calculated. In a
different development, the new twistor ideas were merged with earlier appli-
cations of unitarity [16, 17] and generalised unitarity [18], and led to highly
efficient techniques to calculate one-loop amplitudes in N = 4 SYM [19, 20]
and in N = 1 SYM [21,22].

There are many important reasons for the interest in new, more powerful
techniques to calculate scattering amplitudes. Besides improving our the-
oretical understanding of gauge theories at the perturbative level the most
important reason is the need for higher precision in our theoretical predic-
tions. The advent of the Large Hadron Collider requires the knowledge of
perturbative QCD backgrounds at unprecedented precision to distinguish
“old” physics from the sought for “new” physics, and there exist long wish-
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lists of processes that are yet to be computed. Traditional methods using
Feynman rules are rather inefficient since they hide the simplicity of scat-
tering amplitudes, intermediate expressions tend to be larger than the final
formulae and one has to face the problem of the factorial growth of the num-
ber of diagrams which hampers the use of brute force methods. Therefore,
techniques that directly lead to the simple final answers are desirable. In
the following we want describe some of the novel “twistor string inspired”
techniques, focusing on methods relevant for one-loop amplitudes.

2 Colour Decomposition and Spinor Helicity

Formalism

Here we describe two ingredients that are essential in order to make mani-
fest the simplicity of scattering amplitudes: the colour decomposition, and
the spinor helicity formalism. We will later see how new twistor-inspired
techniques merge fruitfully with these tools.

At tree level, Yang-Mills interactions are planar, hence an amplitude
can be written as a sum over single-trace structures times partial or colour-
stripped amplitudes,

Atree
n ({pi, ϵi, ai}) =

∑

σϵSn/Zn

Tr (T aσ(1) . . . T aσ(n)) (1)

An (σ(p1, ϵ1), . . . , σ(pn, ϵn)) .

Partial amplitudes do not carry any colour structure. They receive contribu-
tions only from Feynman diagrams with a fixed cyclic ordering of the external
lines and have a simpler analytic structure than the full amplitude. At loop
level, also multi-trace structures appear, which are subleading in the 1/N
expansion. However, for the one-loop gluon scattering amplitudes there ex-
ist a simple (linear) relation between the planar and non-planar terms and,
therefore, we have to consider only planar ones.

The spinor helicity formalism, is largely responsible for the existence of
very compact formulas of tree and loop amplitudes in massless theories. In
four dimensions the Lorentz group is SL(2,C) and a Lorentz vector is equiv-
alent to a bi-spinor, i.e. the four-momentum can be written as a 2×2 matrix
paȧ = pµσ

µ
aȧ, a, ȧ = 1, 2, where a and ȧ are left and right handed spinor

indices, respectively. If pµ describes the momentum of a massless, on-shell
particle, then p2 = detpaȧ = 0 and the matrix paȧ can be written as a product
of a left and a right-handed spinor

paȧ = λaλ̃ȧ . (2)
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In real Minkowski space the left and right-handed spinors are related by
complex conjugation λ̃ = ±λ. It is useful to introduce the following Lorentz
invariant brackets: ⟨ij⟩ = ϵabλi

aλ
j
b and [ji] = ϵȧḃλ̃i

ȧλ̃
j

ḃ
, in terms of which dot

products of on-shell four-momenta can be rewritten as 2ki · kj = ⟨ij⟩[ji].
The simplest non-vanishing tree-level gluon scattering amplitudes have

exactly two negative helicity gluons, denoted by i and j, and otherwise only
positive helicity gluons. Since amplitudes with zero or one negative helic-
ity gluon vanish, these amplitudes are called maximally helicity violating
(MHV). Up to a trivial momentum conservation factor they take the follow-
ing form

AMHV(λi) = ign−2 ⟨ij⟩
⟨12⟩ . . . ⟨(n − 1)n⟩⟨n1⟩

. (3)

The most remarkable fact about this formula, besides its simplicity, is that
it is holomorphic (no λ̃s appear), which has important consequences when
the amplitude is transformed to twistor space.

3 Twistor Space and MHV Diagrams

In a nutshell, twistor space is obtained from the spinor variables (λa, λ̃ȧ) by
performing a “half Fourier transform” (FT), i.e. a FT of one of the spinor
variables, say λ̃ȧ → µȧ. Twistor space (for complexified Minkowski space) is
a four-dimensional complex space (λa, µȧ). However, amplitudes turn out to
be homogeneous functions of the twistor variables and it is more natural to
think about projective twistor space (λa, µȧ) ∼ (tλa, tµȧ) with t a non-zero
complex number.

In twistor theory a central rôle is played by the incidence relation

µȧ + xaȧλ
a = 0 , (4)

which describes the correspondence between Minkowski space and twistor
space. In particular if we fix a point in Minkowski space xaȧ this leads
to two complex equations that describe a line in projective twistor space.
As mentioned earlier the MHV tree amplitudes are holomorphic, except for
the overall momentum conservation factor δ4(

∑
λiλ̃i), and therefore their

transformation to twistor space is particularly simple:

ÃMHV(λ, µ) ∼ AMHV(λ)

∫ ∏

i

dλ̃ie
iµiλ̃ieixλiλ̃i

∼ AMHV(λ)
∏

i

δ(µi + xλi) . (5)
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Notice the appearance in (5) of the incidence relation (4), which implies
that MHV amplitudes are supported on a line in twistor space. For more
complicated amplitudes the localisation properties are almost as simple, in
particular an amplitude with Q negative helicity gluons localises on sets of
Q−1 intersecting lines. These simple geometrical structures in twistor space

Figure 1: Twistor space localisation of tree amplitudes with Q = 3 and Q = 4

of the amplitudes led Cachazo, Svrček and Witten (CSW) to propose [2] a
novel perturbative expansion for tree-level amplitudes in Yang-Mills using
MHV amplitudes as effective vertices. It is indeed natural to think of an
MHV amplitude as a local interaction, since the line in twistor space on
which a MHV amplitude localises corresponds to a point in Minkowski space
via the incidence relation.

In the MHV diagrammatic method of [2], MHV vertices are connected
by scalar propagators 1/P 2 and all diagrams with a fixed cyclic ordering
of external lines have to be summed. The crucial point is clearly to define
an off-shell continuation of MHV amplitudes. CSW proposed to associate
internal (off-shell) legs with momentum P the spinor λPa := Paȧηȧ, where
η denotes an arbitrary reference spinor. We can assign a spinor to every
internal momentum and insert this spinor in the Parke-Taylor formula (3)
to define the off-shell MHV vertex. It can be shown [2] that after summing
all diagrams the dependence on the reference spinor drops out. Proofs of
the equivalence of MHV diagrams and usual Feynman diagrams at tree level
have been presented in [11, 23–25]. Interestingly, MHV rules for tree-level
gravity have also been derived in [26].

4 From Trees to Loops

The success of the MHV method at tree level brings up the question if this
can be extended to the quantum level, i.e. to loop amplitudes. The original
prognosis from twistor string theory was negative because of the presence of
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unwanted conformal supergravity modes that spoil the duality with Yang-
Mills at loop level. Remarkably, we will find perfect agreement between loop
MHV diagrams (such as in Figure 2) and the results obtained with more
standard methods.

For simplicity let us focus on the simplest one-loop amplitudes, the MHV
one-loop amplitudes in N = 4 super Yang-Mills. These amplitudes were

!L1

MHV MHV

L2

m2

m1 m1-1

m2+1

Figure 2: MHV diagrams for the MHV one-loop amplitudes in N = 4 SYM

computed in [16] using the four-dimensional cut-constructibility approach,
which utilises the fact that one-loop amplitudes in supersymmetric theories
can be reconstructed from their discontinuities. The result is surprisingly
simple and can be expressed in terms of the so-called 2-mass easy box func-
tions F 2me(s, t, P 2, Q2) as

A1−loop
MHV = Atree

MHV ×
∑

p,q

F 2me(s, t, P 2, Q2) . (6)

q

p

P

Q

Figure 3: A graphical representation of the 2-mass easy box function

It turns out that the MHV diagrammatic calculation [12] agree perfectly
with the result of [16]. A few remarks are in order here:
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• In the calculation it is crucial to decompose the loop momentum L in an
on-shell part l plus a part proportional to the reference null-momentum
η: L = l + zη.

• This decomposition naturally leads to dispersion integrals
∫

dz/z(· · · ),
which do not need subtractions.

• This calculation provides a check of the MHV method, e.g. the proof
of covariance (η-independence) is highly non-trivial.

• This calculation incorporates a large number of conventional Feynman
diagrams.

This approach readily applies to non-MHV amplitudes and theories with
less supersymmetry. In [13, 14] the method was applied to the case of MHV
one-loop amplitudes in N = 1 SYM and complete agreement with a calcula-
tion using the cut-constructibility approach [17] was found. Finally, in [15]
the first new result from MHV diagrams at one-loop was obtained: the cut-
containing part of the MHV one-loop amplitudes in pure Yang-Mills.

Having discussed these important checks of the MHV method, in the
next Section we will argue that generic one-loop scattering amplitudes can
be equivalently computed with MHV diagrams.

5 From Loops to Trees

In order to prove that MHV diagrams produce the correct result for scattering
amplitudes at the quantum level, one has to

1. Prove the covariance of the result;
2. Prove that all physical singularities of the scattering amplitudes (soft,

collinear and multiparticle) are correctly reproduced.

Indeed, if A(n)
MHV is the result of the calculation of an n-point scattering

amplitude based on MHV diagrams, and AF is the correct result (obtained

using Feynman diagrams), the difference A(n)
MHV −A(n)

F must be a polynomial
which, by dimensional analysis, has dimension 4−n. But such a polynomial
cannot exist except for n = 4. This case can be studied separately, and we
have already discussed the agreement with the known results for theories
with N = 1, 2, 4 supersymmetry.

In this section we will will report on the calculation of generic one-loop
amplitudes with MHV diagrams [27]. Firstly, we will prove the covariance
of the result. This proof relies on two basic ingredients: the locality of the
MHV vertices, and a beautiful result by Feynman known as the Feynman
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Tree Theorem [28]. This theorem relates the contribution of a loop amplitude
to those of amplitudes obtained by opening up the loop in all possible ways;
strikingly, this theorem allows one to calculate loops from on-shell trees. Our
next goal will be to show that soft and collinear singularities are correctly
reproduced by MHV diagrams at one loop. Thus, for a complete proof of
the MHV method at one loop, it would only remain to show the agreement
of multiparticle singularities.

5.1 The Feynman Tree Theorem and the Proof of Co-

variance

We begin by briefly reviewing Feynman’s Tree Theorem. This result is based
on the decomposition of the Feynman propagator into a retarded (or ad-
vanced) propagator and a term which has support on shell. For instance,

∆F (P ) = ∆R(P ) + 2πδ(P 2 − m2)θ(−P0) . (7)

Suppose we wish to calculate a certain one-loop diagram L, and let LR

be the quantity obtained from L by replacing all Feynman propagators by
retarded propagators.2 Clearly LR = 0, as there are no closed timelike curves
in Minkowski space. This equation can fruitfully be used to work out the
desired loop amplitude. Indeed, by writing the retarded propagator as a sum
of Feynman propagator plus an on-shell supported term as dictated by (7),
one finds that

L = L1−cut + L2−cut + L3−cut + L4−cut . (8)

Here Lp−cut is the sum of all the terms obtained by summing all possible di-
agrams obtained by replacing p propagators in the loop with delta functions.
Each delta function cuts open an internal loop leg, and therefore a term with
p delta functions computes a p-particle cut in a kinematical channel deter-
mined by the cut propagators (whose momentum is set on shell by the delta
functions).

Feynman’s Tree Theorem (8) states that a one-loop diagram can be ex-
pressed as a sum over all possible cuts of the loop diagram. The process of
cutting puts internal lines on shell; the remaining phase space integrations
have still to be performed, but these are generically easier than the original
loop integration. Thus the Feynman Tree Theorem implies that one-loop
scattering amplitudes can be determined from on-shell data alone. Interest-
ingly, one can iterate this procedure and apply it to higher loop diagrams.

2The same argument works for advanced propagators.
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Now we apply the Feynman Tree Theorem to MHV diagrams. This pos-
sibility is guaranteed by the local character in Minkowski space of an MHV
interaction vertex; thus a closed loop MHV diagram where propagators are
replaced by retarded or advanced propagators vanishes, and one arrives at
an equation identical to (8). Specifically, in [27] we used Feynman’s Tree
Theorem in order to prove that one-loop amplitudes calculated with MHV
diagrams are covariant. More precisely, we were able to show that the sum
of all possible p-cut MHV diagrams is separately covariant. The remaining
Lorentz-invariant phase space integrations are also invariant, hence the full
amplitude – given by summing over p-trees with p = 1, . . . , 4 as indicated by
(8) – is also covariant.

A sketch of the proof of covariance for the case of one-loop amplitudes
with the MHV helicity configuration is as follows. The one-loop MHV di-
agrams contributing to an n-point MHV amplitude are presented in Figure
2. In Figure 4 we show the one-particle and two-particle cut diagrams which

MHV MHV MHV MHV

Figure 4: One-particle and two-particle MHV diagrams contributing to the
one-loop MHV scattering amplitude.

are generated in the application of the Feynman Tree Theorem.3 We start by
focussing on one-particle cut diagrams. These one-particle cut-diagrams are
nothing but tree-level diagrams, which are then integrated using a Lorentz
invariant phase space measure. We now make the following important ob-
servation: these tree (one-cut) diagrams would precisely sum to a tree-level
next-to-MHV (NMHV) amplitude with n+2 external legs (which would then
be covariant as shown in [2]), if we also include the set of diagrams where
the two legs into which the cut propagator is broken are allowed to be at the
same MHV vertex. Such diagrams are obviously never generated by cutting
a loop leg in MHV diagrams of the type depicted in Figure 2. These “miss-
ing” diagrams are drawn in Figure 5. MHV rules tell us, before any phase
space integration is performed, that the sum of one-particle cut diagrams

3In our notation we only draw vertices and propagators (or cut-propagators) connecting
them. It will be understood that we have to distribute the external gluons among the MHV
vertices in all possible ways compatible with cyclic ordering, and the requirement that the
two vertices must have the helicity configuration of an MHV amplitude. Moreover we will
have to sum over all possible helicity assignments of the internal legs and, where required,
over all possible particle species which can run in the loop.
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of Figures 4 and 5 generates a NMHV amplitude with n + 2 external legs.
Since the phase space measure is Lorentz invariant, it follows that the sum
of one-particle cut diagrams, including the missing diagrams, is covariant.

MHVMHV

-/+

+/-

Figure 5: In this Figure we represent “missing diagrams”, mentioned in the
text.

To complete the proof of covariance we have to justify the inclusion of
these missing diagrams. Here we will present an explanation which relies
on supersymmetry.4 The diagrams where two adjacent and opposite helic-
ity legs from the same MHV vertex are sewn together vanish when summed
over particle species in a supersymmetric theory. Individual diagrams before
summing over particle species diverge because of the collinearity of the mo-
menta of the two legs, but the sum over particle species vanishes even before
integration. So we discover that we could have actually included these di-
agrams from the start, since their contribution is zero. Hence one-particle
cut diagrams of MHV one-loop amplitudes generate phase space integrals of
tree-level NMHV amplitudes, and are, therefore, covariant.

Next we look at two-particle cut diagrams. These split the one-loop
diagram of Figure 2 into two disconnected pieces (see the second diagram in
Figure 4). These are two MHV amplitudes, because the two internal legs are
put on shell by the Feynman cuts. Therefore, no η-dependence is produced
by these two-particle cut diagrams.

Summarising, we have shown that Feynman one-particle and two-particle
cut diagrams are separately covariant. By Feynman’s Tree Theorem (8) we
conclude that the physical one-loop MHV amplitude is covariant too.

The main lines of the proof of covariance we have discussed in the sim-
ple example of an MHV amplitude are easily generalised more complicated
amplitudes. In particular, we notice that:

1. In a one-loop MHV diagram with v vertices and n external particles
(contributing to an Nv−2MHV amplitude), the top-cut is necessarily the v-
particle cut. This will always be η-independent by construction. Notice that
this top cut will generically vanish if v > 4.

4An alternative proof, not relying on supersymmetry, can be found in [27].
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2. All p-particle cuts which are generated by the application of Feynman’s
Tree Theorem split each one-loop MHV diagram into p disconnected pieces
when p > 1. In all such cases we see that amplitudes are produced on all
sides of the cut propagators when the sum over all MHV diagrams is taken.

3. The case of a one-particle cut is special since it generates a connected
tree diagram. Similarly to the example discussed earlier, one realises that by
adding missing diagrams the one-cut diagrams group into Nv−1MHV ampli-
tudes with n + 2 external legs (which are of course covariant).

4. To see amplitudes appearing on all sides of the cuts, one has to sum
over all one-loop MHV diagrams.

In this way one can show the covariance of the result of a MHV diagram
calculation for amplitudes with arbitrary helicities.

5.2 Collinear limits

In this section we address the issue of reproducing the correct singularities
of the scattering amplitudes from MHV diagrams. We begin with collinear
limits. At tree level, collinear limits were studied in [2], and shown to be in
agreement with expectations from field theory. Consider now a one-loop scat-
tering amplitude A1−loop

n . When the massless legs a and b become collinear,
the amplitude factorises as [16, 17, 29, 30]

A1−loop
n (1, . . . , aλa , bλb , . . . , n)

a∥b
−−→ (9)

∑

σ

[
Splittree

−σ (aλa , bλb) A1−loop
n−1 (1, . . . , (a + b)σ, . . . , n)

+ Split1−loop
−σ (aλa , bλb) Atree

n−1(1, . . . , (a + b)σ, . . . , n)

]
.

Splittree are the gluon tree-level splitting functions, whose explicit forms can
be found e.g. in [31]. Split1−loop is a supersymmetric one-loop splitting func-
tion. In [32] and [33] explicit formulae for this one-loop splitting function,
valid to all orders in the dimensional regularisation parameter ϵ, were found.
The result of [33] is:

Split1−loop
−σ (aλa , bλb) = Splittree

−σ (aλa , bλb) r(z) , (10)

where, to all orders in ϵ, r(z) =

cΓ

ϵ2

(−sab

µ2

)−ϵ
[
1 − 2F1

(
1,−ϵ, 1 − ϵ,

z − 1

z

)
− 2F1

(
1,−ϵ, 1 − ϵ,

z

z − 1

)]

(11)
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and

cΓ =
Γ(1 + ϵ)Γ2(1 − ϵ)

(4π)2−ϵΓ(1 − 2ϵ)
. (12)

Here the parameter z is introduced via the relations ka := zkP , kb := (1 −
z)kP , where k2

P → 0 in the collinear limit. Notice that in (9) we sum over
the two possible helicities σ = ±.

In [27] we were able to reproduce (9) from a calculation based on one-
loop MHV diagrams; in particular we were able to re-derive the all-orders in
ϵ expressions (10) and (11). Similarly to the tree-level, the different collinear
limits at one-loop arise from different MHV diagrams.

As an example, consider the ++ → + collinear limit. Consider first the
diagrams where the two legs becoming collinear, a and b, are either a proper
subset of the legs attached to a single MHV vertex, or belong to a four-point
MHV vertex A4,MHV(a, b, l2,−l1) but the loop legs L1 and L2 are connected
to different MHV vertices.5 In this case we call sab a non-singular channel.
Summing over all MHV diagrams where sab is a non-singular channel, one
immediately sees that a contribution identical to the first term in (9) is
generated.

Next we consider singular-channel diagrams (a prototypical one is shown
in Figure 6), i.e. diagrams where the legs a and b belong to a four-point MHV
vertex and the two remaining loop legs are attached to the same MHV vertex.
The diagram shown in Figure 6 has been calculated in [12], and in [27] we

MHV
4pt

MHV

a+

b+

MHV

MHV

MHV

MHV
L2

L1

Figure 6: A schematic example of a one-loop MHV diagram contributing to
a generic non-MHV one-loop amplitude where sab is a singular channel. In
the collinear limit a ∥ b, diagrams of this type generate the second term on
the right hand side of (9).

5Thus, even if L1 and L2 become null and collinear, nothing special happens to the
sum of tree MHV diagrams on the right hand side of this four-point MHV vertex, precisely
because L1 and L2 are not part of the same MHV vertex.
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showed that it precisely accounts for the second term in (9).
A similar analysis can be carried out for the other collinear limits, as well

as for the soft limits. In all cases we found complete agreement with the
known expressions for the all-orders in ϵ collinear and soft functions [27].

6 Generalised Unitarity

One-loop scattering amplitudes in supersymmetric gauge theories are linear
combinations of scalar box, tensor triangle and tensor bubble integral func-
tions with coefficients that are rational functions of the momenta and spinor
variables. One wonders if these coefficients can be determined directly with-
out performing any loop integration. The answer turns out to be yes and
the main tool are unitarity (2-particle) cuts and generalised (3-particle and
4-particle) cuts [34, 35]. In an n−particle cut of a loop diagram, n propaga-
tors are replaced by δ-functions which (partially) localise the loop integration
and produce a sufficient number of linear equations to fix all coefficients. The
method using 2-particle cuts was introduced [16, 17], where it was used to
calculate the first infinite series of one-loop amplitudes in SYM, and later
generalised to include 3-particle cuts in [18, 20]. Finally, in [19] 4-particle
cuts were shown to be an efficient tool to find coefficients of box functions.
In particular they reduce the calculation of all one-loop amplitudes in N = 4
SYM to a simple algebraic exercise.

In non-supersymmetric theories loop amplitudes contain additional ra-
tional terms, which do not have cuts in 4 dimensions. This problem can be
elegantly solved by working in D = 4−2ϵ dimensions, since then also rational
terms develop cuts and become amenable to unitarity techniques [36]. In [37]
generalised unitarity techniques in D dimensions were shown to be a pow-
erful tool to calculate complete one-loop amplitudes in non-supersymmetric
theories like QCD. The price to pay is that we have to evaluate cuts in D di-
mensions; in practice this means that we have to make the internal particles
massive with uniform mass µ and integrate over µ [36].

We now illustrate this technique for the simplest one-loop amplitude in
pure YM which has four positive helicity gluons ⟨1+2+3+4+⟩. It turns out
that in this case we only have to consider the 4-particle cut depicted in
Figure 7; no other cuts are necessary. The 4-particle cut gives µ4 [12][34]

⟨12⟩⟨34⟩
where µ is the mass of the internal particle. This implies that the amplitude
is proportional to a scalar box integral with µ4 inserted in the integral I4[µ4] =
−ϵ(1− ϵ)ID=8−2ϵ

4 = −1
6 +O(ϵ). Hence, the amplitude is purely rational, and
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Figure 7: The 4-particle cut of the one-loop ⟨1+2+3+4+⟩ amplitude in Yang-
Mills

we find

A4(1
+, 2+, 3+, 4+) = −

1

6

[12][34]

⟨12⟩⟨34⟩
. (13)

In [37] this method was applied successfully to the remaining 4-point am-
plitudes ⟨1+2+3+4−⟩, ⟨1−2−3+4+⟩ and ⟨1−2+3−4+⟩, and to the particular
5-point amplitude ⟨1+2+3+4+5+⟩. Interestingly, it turned out that for the
amplitudes with one or more negative helicity gluons, only 3-particle and 4-
particle cuts were needed in order to determine the amplitude. This method
can be applied directly to more general amplitudes and the 5- and 6-point
amplitudes are currently under investigation.
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