1,336 research outputs found

    The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Get PDF
    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites, and (8) a microwave imager under planning for the Defense Weather Satellite System (DWSS)

    Meteorological satellites

    Get PDF
    An overview is presented of the meteorological satellite programs that have been evolving from 1958 to the present, and plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's are reviewed. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's

    World weather program

    Get PDF
    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented

    The status of environmental satellites and availability of their data products

    Get PDF
    The latest available information about the status of unclassified environmental satellite (flown by the United States) and their data products is presented. The type of environmental satellites discussed include unmanned earth resource and meteorological satellites, and manned satellites which can act as a combination platform for instruments. The capabilities and data products of projected satellites are discussed along with those of currently operating systems

    EOS Data and Information System (EOSDIS)

    Get PDF
    In the past decade, science and technology have reached levels that permit assessments of global environmental change. Scientific success in understanding global environmental change depends on integration and management of numerous data sources. The Global Change Data and Information System (GCDIS) must provide for the management of data, information dissemination, and technology transfer. The Earth Observing System Data and Information System (EOSDIS) is NASA's portion of this global change information system

    Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Get PDF
    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha- Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide next-generation precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory

    Meteorological satellite accomplishments

    Get PDF
    The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology

    Weather and climate

    Get PDF
    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate

    Space-Based Remote Sensing of the Earth: A Report to the Congress

    Get PDF
    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described
    • …
    corecore