2 research outputs found

    Advanced optical modulation and fast reconfigurable en/decoding techniques for OCDMA application

    Get PDF
    With the explosive growth of bandwidth requirement in optical fiber communication networks, optical code division multiple access (OCDMA) has witnessed tremendous achievements as one of the promising technologies for optical access networks over the past decades. In an OCDMA system, optical code processing is one of the key techniques. Rapid optical code reconfiguration can improve flexibility and security of the OCDMA system. This thesis focuses on advanced optical modulations and en/decoding techniques for applications in fast reconfigurable OCDMA systems and secure optical communications. A novel time domain spectral phase encoding (SPE) scheme which can rapidly reconfigure the optical code and is compatible with conventional spectral domain phase en/decoding by using a pair of dispersive devices and a high speed phase modulator is proposed. Based on this scheme, a novel advanced modulation technique that can simultaneously generate both the optical code and the differential-phase-shift-keying (DPSK) data using a single phase modulator is experimentally demonstrated. A symmetric time domain spectral phase encoding and decoding (SPE/SPD) scheme using a similar setup for both the transmitter and receiver is further proposed, based on which a bit-by-bit optical code scrambling and DPSK data modulation technique for secure optical communications has been successfully demonstrated. By combining optical encoding and optical steganography, a novel approach for secure transmission of time domain spectral phase encoded on-off-keying (OOK)/DPSK-OCDMA signal over public wavelength-division multiplexing (WDM) network has also been proposed and demonstrated. To enable high speed operation of the time domain SPE/SPD scheme and enhance the system security, a rapid programmable, code-length variable bit-by-bit optical code shifting technique is proposed. Based on this technique, security improvements for OOK/DPSK OCDMA systems at data rates of 10Gb/s and 40Gb/s using reconfigurable optical codes of up to 1024-chip have been achieved. Finally, a novel tunable two-dimensional coherent optical en/decoder which can simultaneously perform wavelength hopping and spectral phase encoding based on coupled micro-ring resonator is proposed and theoretically investigated. The techniques included in this thesis could be potentially used for future fast reconfigurable and secure optical code based communication systems

    Optical pulse processing towards Tb/s high-speed photonic systems

    Get PDF
    Due to the continued growth of high-bandwidth services provided by the internet, there is a requirement to operate individual line rates in excess of 100 Gb/s in next generation optical communications systems. Thus, to implement these high-speed optical networks all-optical processing techniques are necessary for pulse shaping and pulse routing. Two sub-systems (pulse generation and wavelength conversion), which exploit optical processing techniques are explored within this thesis. Future systems will require high-quality pulse sources and this thesis develops the pulse generation technique of gain switching to provide simple and cost efficient pulse sources. The poor pulse quality typically associated with gain switching is enhanced by developing all-optical methods. The main attribute of the first pulse generation scheme presented is its wavelength tunability over 50 nm. The novelty of the second scheme lies in the ability to design a grating which has a nonlinear chirp profile exactly opposite to the gain-switched pulses. This grating used in conjunction with the gain-switched laser generates transform limited pulses suitable for 80 Gb/s systems. Furthermore the use of a vertical microcavity-based saturable absorber to suppress detrimental temporal pulse pedestals of a pulse source is investigated. Next generation networks will require routing of data in the optical domain, which can be accomplished by high-speed all-optical wavelength converters. A semiconductor optical amplifier (SOA) is an ideal device to carry out wavelength conversion. In this thesis pulses following propagation through an SOA are experimentally characterised to examine the temporal and spectral dynamics due to the nonlinear response of the SOA. High-speed wavelength conversion is presented using SOA-based shifted filtering. For the first time 80 Gb/s error-free performance was obtained using cross phase modulation in conjunction with blue spectral shifted filtering. In addition an important attribute of this work experimentally examines the temporal profile and phase of the SOA-based shifted filtering wavelength converted signals. Thus the contribution and effect of ultrafast carrier dynamics associated with SOAs is presented
    corecore