11,060 research outputs found

    Fast and Accurate Recognition of Chinese Clinical Named Entities with Residual Dilated Convolutions

    Full text link
    Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translation research. In recent years, deep learning methods have achieved significant success in CNER tasks. However, these methods depend greatly on Recurrent Neural Networks (RNNs), which maintain a vector of hidden activations that are propagated through time, thus causing too much time to train models. In this paper, we propose a Residual Dilated Convolutional Neural Network with Conditional Random Field (RD-CNN-CRF) to solve it. Specifically, Chinese characters and dictionary features are first projected into dense vector representations, then they are fed into the residual dilated convolutional neural network to capture contextual features. Finally, a conditional random field is employed to capture dependencies between neighboring tags. Computational results on the CCKS-2017 Task 2 benchmark dataset show that our proposed RD-CNN-CRF method competes favorably with state-of-the-art RNN-based methods both in terms of computational performance and training time.Comment: 8 pages, 3 figures. Accepted as regular paper by 2018 IEEE International Conference on Bioinformatics and Biomedicine. arXiv admin note: text overlap with arXiv:1804.0501

    mARC: Memory by Association and Reinforcement of Contexts

    Full text link
    This paper introduces the memory by Association and Reinforcement of Contexts (mARC). mARC is a novel data modeling technology rooted in the second quantization formulation of quantum mechanics. It is an all-purpose incremental and unsupervised data storage and retrieval system which can be applied to all types of signal or data, structured or unstructured, textual or not. mARC can be applied to a wide range of information clas-sification and retrieval problems like e-Discovery or contextual navigation. It can also for-mulated in the artificial life framework a.k.a Conway "Game Of Life" Theory. In contrast to Conway approach, the objects evolve in a massively multidimensional space. In order to start evaluating the potential of mARC we have built a mARC-based Internet search en-gine demonstrator with contextual functionality. We compare the behavior of the mARC demonstrator with Google search both in terms of performance and relevance. In the study we find that the mARC search engine demonstrator outperforms Google search by an order of magnitude in response time while providing more relevant results for some classes of queries

    Unsupervised Biomedical Named Entity Recognition

    Get PDF
    Named entity recognition (NER) from text is an important task for several applications, including in the biomedical domain. Supervised machine learning based systems have been the most successful on NER task, however, they require correct annotations in large quantities for training. Annotating text manually is very labor intensive and also needs domain expertise. The purpose of this research is to reduce human annotation effort and to decrease cost of annotation for building NER systems in the biomedical domain. The method developed in this work is based on leveraging the availability of resources like UMLS (Unified Medical Language System), that contain a list of biomedical entities and a large unannotated corpus to build an unsupervised NER system that does not require any manual annotations. The method that we developed in this research has two phases. In the first phase, a biomedical corpus is automatically annotated with some named entities using UMLS through unambiguous exact matching which we call weakly-labeled data. In this data, positive examples are the entities in the text that exactly match in UMLS and have only one semantic type which belongs to the desired entity class to be extracted (for example, diseases and disorders). Negative examples are the entities in the text that exactly match in UMLS but are of semantic types other than those that belong to the desired entity class. These examples are then used to train a machine learning classifier using features that represent the contexts in which they appeared in the text. The trained classifier is applied back to the text to gather more examples iteratively through the process of self-training. The trained classifier is then capable of classifying mentions in an unseen text as of the desired entity class or not from the contexts in which they appear. Although the trained named entity detector is good at detecting the presence of entities of the desired class in text, it cannot determine their correct boundaries. In the second phase of our method, called “Boundary Expansion”, the correct boundaries of the entities are determined. This method is based on a novel idea that utilizes machine learning and UMLS. Training examples for boundary expansion are gathered directly from UMLS and do not require any manual annotations. We also developed a new WordNet based approach for boundary expansion. Our developed method was evaluated on three datasets - SemEval 2014 Task 7 dataset that has diseases and disorders as the desired entity class, GENIA dataset that has proteins, DNAs, RNAs, cell types, and cell lines as the desired entity classes, and i2b2 dataset that has problems, tests, and treatments as the desired entity classes. Our method performed well and obtained performance close to supervised methods on the SemEval dataset. On the other datasets, it outperformed an existing unsupervised method on most entity classes. Availability of a list of entity names with their semantic types and a large unannotated corpus are the only requirements of our method to work well. Given these, our method generalizes across different types of entities and different types of biomedical text. Being unsupervised, the method can be easily applied to new NER tasks without needing costly annotations

    NERO: a biomedical named-entity (recognition) ontology with a large, annotated corpus reveals meaningful associations through text embedding.

    Get PDF
    Machine reading (MR) is essential for unlocking valuable knowledge contained in millions of existing biomedical documents. Over the last two decades1,2, the most dramatic advances in MR have followed in the wake of critical corpus development3. Large, well-annotated corpora have been associated with punctuated advances in MR methodology and automated knowledge extraction systems in the same way that ImageNet4 was fundamental for developing machine vision techniques. This study contributes six components to an advanced, named entity analysis tool for biomedicine: (a) a new, Named Entity Recognition Ontology (NERO) developed specifically for describing textual entities in biomedical texts, which accounts for diverse levels of ambiguity, bridging the scientific sublanguages of molecular biology, genetics, biochemistry, and medicine; (b) detailed guidelines for human experts annotating hundreds of named entity classes; (c) pictographs for all named entities, to simplify the burden of annotation for curators; (d) an original, annotated corpus comprising 35,865 sentences, which encapsulate 190,679 named entities and 43,438 events connecting two or more entities; (e) validated, off-the-shelf, named entity recognition (NER) automated extraction, and; (f) embedding models that demonstrate the promise of biomedical associations embedded within this corpus

    Linking social media, medical literature, and clinical notes using deep learning.

    Get PDF
    Researchers analyze data, information, and knowledge through many sources, formats, and methods. The dominant data format includes text and images. In the healthcare industry, professionals generate a large quantity of unstructured data. The complexity of this data and the lack of computational power causes delays in analysis. However, with emerging deep learning algorithms and access to computational powers such as graphics processing unit (GPU) and tensor processing units (TPUs), processing text and images is becoming more accessible. Deep learning algorithms achieve remarkable results in natural language processing (NLP) and computer vision. In this study, we focus on NLP in the healthcare industry and collect data not only from electronic medical records (EMRs) but also medical literature and social media. We propose a framework for linking social media, medical literature, and EMRs clinical notes using deep learning algorithms. Connecting data sources requires defining a link between them, and our key is finding concepts in the medical text. The National Library of Medicine (NLM) introduces a Unified Medical Language System (UMLS) and we use this system as the foundation of our own system. We recognize social media’s dynamic nature and apply supervised and semi-supervised methodologies to generate concepts. Named entity recognition (NER) allows efficient extraction of information, or entities, from medical literature, and we extend the model to process the EMRs’ clinical notes via transfer learning. The results include an integrated, end-to-end, web-based system solution that unifies social media, literature, and clinical notes, and improves access to medical knowledge for the public and experts
    • 

    corecore