98,040 research outputs found

    A Novel Metric Approach Evaluation For The Spatial Enhancement Of Pan-Sharpened Images

    Full text link
    Various and different methods can be used to produce high-resolution multispectral images from high-resolution panchromatic image (PAN) and low-resolution multispectral images (MS), mostly on the pixel level. The Quality of image fusion is an essential determinant of the value of processing images fusion for many applications. Spatial and spectral qualities are the two important indexes that used to evaluate the quality of any fused image. However, the jury is still out of fused image's benefits if it compared with its original images. In addition, there is a lack of measures for assessing the objective quality of the spatial resolution for the fusion methods. So, an objective quality of the spatial resolution assessment for fusion images is required. Therefore, this paper describes a new approach proposed to estimate the spatial resolution improve by High Past Division Index (HPDI) upon calculating the spatial-frequency of the edge regions of the image and it deals with a comparison of various analytical techniques for evaluating the Spatial quality, and estimating the colour distortion added by image fusion including: MG, SG, FCC, SD, En, SNR, CC and NRMSE. In addition, this paper devotes to concentrate on the comparison of various image fusion techniques based on pixel and feature fusion technique.Comment: arXiv admin note: substantial text overlap with arXiv:1110.497

    Wavelet-based fusion of SPOT/VEGETATION and Evisat/Wide Swath data applied to wetland mapping

    Get PDF

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Registration and Fusion of Multi-Spectral Images Using a Novel Edge Descriptor

    Full text link
    In this paper we introduce a fully end-to-end approach for multi-spectral image registration and fusion. Our method for fusion combines images from different spectral channels into a single fused image by different approaches for low and high frequency signals. A prerequisite of fusion is a stage of geometric alignment between the spectral bands, commonly referred to as registration. Unfortunately, common methods for image registration of a single spectral channel do not yield reasonable results on images from different modalities. For that end, we introduce a new algorithm for multi-spectral image registration, based on a novel edge descriptor of feature points. Our method achieves an accurate alignment of a level that allows us to further fuse the images. As our experiments show, we produce a high quality of multi-spectral image registration and fusion under many challenging scenarios
    corecore