4 research outputs found

    Advanced control methods for power converters in distributed generation systems and microgrids

    Get PDF
    The twenty-two papers in this special section focus on flexible control of power converters which serve as interfaces between the distributed generation (DG) units and the legacy alternating current (ac) grid or the ac or direct current (dc) microgrid (MG), is the key to realization of high penetration of renewable energy in a safe and stable fashion. When connected to the ac legacy grid, these power converters need to provide ancillary services such as frequency and voltage support, harmonic compensation, as well as synthetic inertia emulation. Another emerging solution is to interface the DG units with the ac legacy grid through an intermediate entity called anMG. MG can be based either on ac and dc architecture and can work in both stand-alone and grid-connected modes. Since it is responsible for multiple power converters, an MG has higher operational flexibility than individual units.However, due to a lack of stiff voltage reference source and natural inertia, control of MGs is generally more challenging than control of individual grid-connected power converters

    The Role of Power Electronic Converters in Microgrid Technology: A Review of Challenges, Solutions, and Research Directions

    Get PDF
    The paper is on the role of power electronic converters in microgrid technology: A review of challenges, solutions and research directions. The objective of the paper is to perform a comprehensive overview of the role of power electronic converters in microgrid technology, focusing on challenges, solutions, and research directions. Findings revealed that major challenges of power electronic converters integration in microgrid technology are voltage and frequency regulation issues, power quality issues, creative management and coordination challenges, and Integration of renewable energy sources. The solutions to these problems are advanced control algorithms such as Model Predictive Control (MPC); deployment of active power filters or harmonic compensators to reduce harmonic distortion and improve power quality; iimplement a centralized control system with centralized monitoring controllers to coordinate the operation of several converters and ensure consistent operation; and combining multiple renewable energy sources in a hybrid energy system to diversify generation sources and reduce the gap. The future research directions include, among others, advanced control strategies, grid-forming converters, wideband semiconductor, and cyber-security and Resilience. The paper concludes that the integration of power electronic converters into microgrid technology presents both opportunities and challenges. Although these converters play an important role in the efficient conversion, distribution and utilization of energy in microgrids, they face various technical and practical challenges. To mitigate these challenges, the implementation of advanced control strategies, grid-forming converters, etc., is inevitable.&nbsp

    Advanced Control Methods for Power Converters in Distributed Generation Systems and Microgrids

    No full text
    corecore