18,122 research outputs found
A survey of self organisation in future cellular networks
This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
Control-data separation architecture for cellular radio access networks: a survey and outlook
Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided
Leveraging intelligence from network CDR data for interference aware energy consumption minimization
Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo
Recommended from our members
A modular hybrid simulation framework for complex manufacturing system design
For complex manufacturing systems, the current hybrid Agent-Based Modelling and Discrete Event Simulation (ABM–DES) frameworks are limited to component and system levels of representation and present a degree of static complexity to study optimal resource planning. To address these limitations, a modular hybrid simulation framework for complex manufacturing system design is presented. A manufacturing system with highly regulated and manual handling processes, composed of multiple repeating modules, is considered. In this framework, the concept of modular hybrid ABM–DES technique is introduced to demonstrate a novel simulation method using a dynamic system of parallel multi-agent discrete events. In this context, to create a modular model, the stochastic finite dynamical system is extended to allow the description of discrete event states inside the agent for manufacturing repeating modules (meso level). Moreover, dynamic complexity regarding uncertain processing time and resources is considered. This framework guides the user step-by-step through the system design and modular hybrid model. A real case study in the cell and gene therapy industry is conducted to test the validity of the framework. The simulation results are compared against the data from the studied case; excellent agreement with 1.038% error margin is found in terms of the company performance. The optimal resource planning and the uncertainty of the processing time for manufacturing phases (exo level), in the presence of dynamic complexity is calculated
Intelligent systems in manufacturing: current developments and future prospects
Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS
- …
