5 research outputs found

    MODELLING OF COLLECTIVE MOVEMENT IN IMMERSIVE ENVIRONMENTS

    Get PDF
    Immersive technologies allow us to map physical reality by means of 4D virtual systems in ever higher spatial and temporal detail, up to a scale level of 1 : 1. This level of detail enables the representation of phenomena that have been widely ignored by the geovisualization research agenda as yet. An example for such a large scale phenomenon is the collective movement of animals, which can be modelled and visualized only at a fine grained spatio-temporal resolution. This paper focuses on how collective movement can be modelled in an immersive virtual reality (VR) geovisualization. In a brief introduction on immersion and spatial presence we will argue, that high fidelity and realistic VR can strengthen the users’ involvement with the issues visualized. We will then discuss basic characteristics of swarming in nature and review the principal models that have been presented to formalize this collective behavior. Based on the rules of (1) collision avoidance, (2) polarization, (3) aggregation and (4) self-organized criticality we will formulate a viable solution of modelling collective movement within a geovisualization immersive virtual environment. An example of use and results will be presented

    Dynamic virtual reality user interface for teleoperation of heterogeneous robot teams

    Full text link
    This research investigates the possibility to improve current teleoperation control for heterogeneous robot teams using modern Human-Computer Interaction (HCI) techniques such as Virtual Reality. It proposes a dynamic teleoperation Virtual Reality User Interface (VRUI) framework to improve the current approach to teleoperating heterogeneous robot teams

    An evaluation framework for virtual reality safety training systems in the South African Mining Industry

    Get PDF
    The mining industry in South Africa contributes significantly to the national economy. Despite stringent safety legislation, mining accidents cause numerous fatalities and injuries. Inadequate or insufficient training is often cited as a root cause of accidents. Conventional class-based safety training has not reduced the incidence of accidents significantly. By contrast, virtual reality training tools can provide simulated exposure to real-world working conditions without the associated risks. This study describes the application of design-based research (DBR) in the design and development of two desktop virtual reality (VR) systems for safety training in the South African mining industry. The results of a usability context analysis were applied in the design of a VR prototype on generic hazards recognition and rectification, which was used and evaluated at South Africa‘s largest platinum mine site. A case study was conducted to investigate the causes and occurrences of falls of ground, which resulted in the design and development of a second VR prototype focusing on identifying and addressing underground geological conditions. DBR was also used in the generation of an evaluation framework for evaluating VR training systems, namely the Desktop VR Evaluation Framework (DEVREF), which is the major deliverable of the research. DEVREF can make a major contribution to the domain of e-training in mines and is transferable and customisable beyond its initial application. The process flow of the research thus moved beyond merely providing a solution to a complex real-world problem and became a classic DBR study with dual outcomes, namely a practical real-world solution in the form of two VR training systems and a theoretical contribution in the form of the DEVREF evaluation framework. DEVREF evaluates the design of desktop VR training systems in the categories of instructional design, usability, VR systems design, and context-specific criteria for mining. The use of DEVREF is demonstrated by reporting the application of its criteria in evaluating the two VR training systems. Heuristic evaluation, end-user surveys, and interviews were used as evaluation methods. A third contribution is methodological, in that this work proposes a new DBR process model and an interaction design lifecycle model suitable for VR training systems.ComputingD. Phil. (Information Systems

    Development of a client-server application for the analysis of user experiences in virtual reality with visor movement tracking and hand signal recognition

    No full text
    Trabajo de Fin de Grado en Ingeniería del Software (Universidad Complutense, Facultad de Informática, curso 2016/2017)A lo largo de 2016 se ha lanzado al mercado una nueva generación de cascos de Realidad Virtual. Esto ha supuesto un renacer de la inversión y el interés por los dispositivos y aplicaciones relacionados con este campo, desde los sencillos visores para teléfonos móviles, hasta las aparatosas yincanas físicas con visores y controladores hápticos, pasando por los populares vídeos esféricos, en vista onmidireccional de 360 grados. Las productoras de contenidos digitales buscan aplicar experiencias novedosas de Realidad Virtual en ámbitos como el Entretenimiento, la Publicidad y la Comunicación. Por ello, creadores e investigadores necesitan conocer en profundidad la manera en que los usuarios interactúan con estas aplicaciones. Sin duda, disponer de información objetiva y exhaustiva sobre este comportamiento, permite mejorar el software, potenciando o restringiendo distintos aspectos de la experiencia según su relevancia para los usuarios reales. Cuanto más conocimiento se adquiera durante las pruebas, mayor será la calidad del resultado final. El objetivo de este proyecto es dar soporte a la investigación del comportamiento real de los usuarios en aplicaciones avanzadas de Realidad Virtual. La propuesta consiste en el desarrollo de un sistema informático, Haptic Analytics, que sirve como herramienta de recolección y análisis de datos de la experiencia de usuario en aplicaciones que realizan seguimiento del movimiento del visor y seguimiento de posición y reconocimiento gestual de las manos. Dicho sistema cuenta con una arquitectura cliente-servidor donde el cliente es la propia aplicación objeto de estudio, a la que se le añade un componente adicional, y el servidor es un sitio web con gestión de usuarios y de información, que permite a los investigadores consultar, visualizar y descargar en tiempo real la información de sus experimentos. Para probar este sistema se han desarrollado dos aplicaciones distintas de Realidad Virtual, diseñadas para el casco Oculus Rift y el reconocedor de manos Leap Motion. La primera consiste en un pequeño puzle cuya resolución requiere manipular piezas de colores en un tablero. El objetivo es recolocar las piezas según las reglas del juego, usando las manos simplemente a modo de “puntero”. La segunda es un escenario de un videojuego tipo “sala de escape” donde, además de interactuar con objetos de distintas formas, el jugador tendrá que usar gestos manuales para moverse libremente en el entorno virtual. Las pruebas realizadas con ambas aplicaciones confirman que el sistema Haptic Analytics es plenamente funcional, ya que permite recolectar y enviar al sitio web gran cantidad de datos que más tarde pueden ser agregados y convertidos en tablas y gráficas estadísticas de manera automática. Los resultados obtenidos apuntan a que esta puede ser una herramienta muy útil para llevar a cabo futuras investigaciones en el campo de la Realidad Virtual de manera más ágil y eficaz.Throughout 2016, a new generation of Virtual Reality helmets such as Oculus Rift, HTC Live and Playstation VR were launched. This has meant a revival of economic investmentand public interest in the devices and applications of Virtual Reality, from the simple viewers that are coupled to a mobile phone, to the huge virtual yincanas with viewers and haptic controllers that are realized in Physical installations, passing through the popular spherical videos, recorded with a 360 degree omnidirectional view. Many technological companies that produce digital content are betting to create innovative immersive experiences that take full advantage of these devices, in fields such as Advertising, Communication or Entertainment. These companies, like research centers, need to know in depth how users use these Virtual Reality applications. It is reasonable to think that having objective and exhaustive information about this behavior of the users will allow to improve the application, enhancing or leaving aside elements as confirmed its real relevance for the experience. In this way, the more knowledge that is acquired in the testing phase with real users, the higher the software product obtained after each iteration will be. The objective of this project is to give technical support for the investigation on the real user’s behavior in advanced applications of Virtual Reality. The proposal consists of the development of a computer system, Haptic Analytics, which serves as a tool for collecting and analyzing user experience data in Virtual Reality applications with viewfinder movement tracking and hand gesture recognition. This system has a client-server architecture where the part of the client is integrated into the application itself and the part of the server functions as a website where researchers can view and download the statistical information obtained through their experiments. To test this system, we have developed Virtual Reality applications, designed for Oculus Rift and Leap Motion. The first one consists on a small puzzle in which you have to manipulate coloured pieces on a board. The objective is to move the pieces according to the game rules, using the hands as a pointer. The second one is an Escape Room where, in addition to interacting with objects in different ways, the player will have to use manual gestures to move freely through the virtual environment. The tests performed on both applications confirm that the Haptic Analytics system is fully functional, since it allows collecting and sending a great amount of data to the web, where it can be consulted and visualized in a simple and practical way. The results of this work indicate that this can be a very useful tool to streamline future research in the field of Virtual Reality.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu
    corecore