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ABSTRACT: 
 
Immersive technologies allow us to map physical reality by means of 4D virtual systems in ever higher spatial and temporal detail, up 
to a scale level of 1:1. This level of detail enables the representation of phenomena that have been widely ignored by the 
geovisualization research agenda as yet. An example for such a large scale phenomenon is the collective movement of animals, which 
can be modelled and visualized only at a fine grained spatio-temporal resolution. This paper focuses on how collective movement can 
be modelled in an immersive virtual reality (VR) geovisualization. In a brief introduction on immersion and spatial presence we will 

argue, that high fidelity and realistic VR can strengthen the users’ involvement with the issues visualized. We will then discuss basic 
characteristics of swarming in nature and review the principal models that have been presented to formalize this collective behavior. 
Based on the rules of (1) collision avoidance, (2) polarization, (3) aggregation and (4) self-organized criticality we will formulate a 
viable solution of modelling collective movement within a geovisualization immersive virtual environment. An example of use and 
results will be presented. 
 
 

1. IMMERSIVE ENVIRONMENTS IN 

GEOVISUALIZATION 

1.1 Introduction 

The increasing use of immersive virtual reality (VR) technologies 
for geovisualization matters is challenging GIScience in several 
ways: Since VR capabilities of current geographic information 
systems (GIS) are limited, middleware (e.g. game engines like 
Unreal Engine or Unity) is required to visualize GIS data on VR 
output devices (Boulos et al., 2017).  

 
Also the transfer of fundamental GIS concepts and data models 
to immersive VR applications is complex: Generalization on 
different scale levels, for instance, has always been a defining 
criteria in both analogue and digital cartography. Immersive VR 
environments, however, provide vivid illusions of (non-
generalized) reality at spatial scales of up to 1:1, giving the user 
a sense of being virtually located in a real place.  
 

Such vivid illusion is not only a matter of spatial scale but of time 
as well. In most GIS applications, temporal change is either 
neglected or represented in a classified way and with a rather 
coarse resolution. By contrast, successful immersion also 
depends on a continuous and realistic visualization at temporal 
scales of up to 1:1 (Cummings & Bailenson, 2016), especially 
when animate nature is mapped. 
 

The present paper focuses on a particular implication of the 
aforementioned 1:1 ratio between spatial and temporal aspects of 
immersive VR and physical reality, namely the modelling of 
collective movement of animals. We can observe such collective 
movement almost every day, be it in a flock of birds, a swarm of 
insects, a cattle herd or a school of fish. Consequently, whenever 
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we want to successfully immerse a user in a virtual environment, 

we have to model these animate aspects of nature not only at the 
individual but also at an aggregate level at a large (spatial and 
temporal) scale level.  
 
A very brief discussion of concepts that are fundamental to the 
understanding of virtual reality within the scope of this text shall 
precede the subsequent analysis of algorithms and designs on 
modelling swarming behaviour.  

   

1.2 Immersion & Presence 

Immersion can be understood as a technological characteristic of 
a VR system describing “[…] the extent to which the computer 

displays are capable of delivering an inclusive, extensive, 
surrounding and vivid illusion of reality to the senses of a human 
participant” (Slater & Wilbur, 1997, p. 3). In accordance with this 
definition, a highly immersive environment will rely on a 3D 
stereo display with a 6 degrees of freedom (DoF) tracking system 
(Schulze et al., 2011). 
 
Immersion is decisive for the formation of presence (Cummings 
& Bailenson, 2016), roughly defined here as the sense of “being 

there” in a virtual environment (Skarbez et al., 2017). This 
experience of being situated in a VR space can, in turn, increase 
the impact of a geovisualization product (Bailey et al., 2016). In 
a nutshell we can, thus, generalize that immersive VR systems 
may facilitate presence while presence may strengthen the users’ 
involvement with the issues visualized in VR space.  
 

1.3 Ratio in Immersive Environments 

Realism and fidelity of the VR environment usually are not 
considered as defining criteria for the formation of presence 
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(Cummings & Bailenson, 2016). However, for geovisualization 

matters it can be important “that the scenario corresponds to 
reality to the maximum extent possible” (Skarbez et al., 2017,     
p. 96:5), i.e. to virtually emulate the real world (Alexander et al., 
2005).  
 
In practical terms, this claim for correspondence between virtual 
and physical reality, together with the aforementioned definition 
of presence as the feeling of being there lead us to 

geovisualization immersive virtual environments (GeoIVE; 
Hruby et al., 2018), which allow the user to experience in first 
person a physical reality that is distant in time and/or space.  
 

 
 

 
 

Figure 1. Ratio of 1:1 between physical reality (above) and 
virtual reality (below). Example from a GeoIVE of a 

Caribbean coral reef (cf. Hruby et al., 2018) 

 
We propose to call such relationship between virtual and real 
space a 1:1 scale, where the user perceives a VR representation 
of a real place at a level of detail as he would do being physically 
there. This will allow her to unambiguously (i.e.: 1:1) assign a 
virtually experienced model to the corresponding real object.   
 
Regarding the representation of swarming behavior, a 1:1 scale 

not only depends on the 3D modelling of animal groups at a level 
of detail that allows recognizing the species. Also the collective 
movement of the swarm members needs to be simulated in a 
highly detailed manner.  
 

2. COLLECTIVE ANIMAL BEHAVIOUR  

2.1 Understanding Collective Behaviour  

A considerable amount of literature is documenting the benefits 

of animal group formation (cf. Krause & Ruxton, 2002, for 
overview and further readings). However, the set of rules 
followed by the individual animal in order to achieve a specific 
collective behavior is unexplored as yet.  
 
Self-organization has been one of the main concepts used so far 
to model and explain collective animal behavior: “The central 
tenet of self-organization is that simple repeated interactions 
between individuals can produce complex adaptive patterns at the 

level of the group.” (Sumpter, 2006, p. 5).  

Within the framework of self-organization, several principles of 

collective animal behavior have been proposed (Bouffanais, 
2016; Sumpter, 2006): Production of patterns is a decisive 
characteristic of swarming (Bouffanais, 2016). Patterns can 
emerge from positive feedback (in space), e.g. reinforcement or 
“recruitment to a food source” (Bonabeau et al., 1997, p. 183) or 
synchronization (in time), while negative feedback mechanisms 
help stabilizing patterns. However, collective structures can arise 
out of randomness at the individual level as well (Theraulaz et al, 

2003).  
 
The emergence of order can be also analyzed from a swarm 
intelligence perspective (Engelbrecht, 2006), especially where 
modelling a virtual swarm system is the primary research interest. 
Finally, and with regard to the collective processing of 
information, also the concept of leadership is worth considering. 
In accordance with Sumpter (2006), there is only an apparent 
contradiction between self-organization and leadership: “Rather 

than being opposites, self-organized positive feedback and 
leadership are instead powerfully combined to produce co-
ordinated collective migration” (p. 17). A classification and 
formal description of leadership structure within groups of 
animals has been presented by Garland et al. (2018).   
 

2.2 Formal Descriptions of Collective Behaviour 

The probably most widely used simulations of swarm behavior 
are known as self-propelled particles (SPP) models (Vicsek & 
Zafeiris, 2012; Bouffanais, 2016), introduced in the 1980s by 
Aoki (1982) and Reynolds (1987).  
 

Basic SPP models are designed upon a set of three rules guiding 
the movement of each agent (i.e.: the computed object that 
represents the real-world swarm member): (A) collision 
avoidance, (B) polarization (i.e. alignment with the average 
heading of neighboring flockmates) and (C) aggregation towards 
the average position of the flockmates. Figure 2 illustrates these 
rules of “polarized noncolliding aggregate motion” (Reynolds, 
1987, p. 32): 

 
 

 
 

 
Figure 2. Basic rules of the SPP model applied on a focus agent 

(black fish): collision avoidance (A), polarization 
(B), aggregation (C); modified from Vicsek & 

Zafeiris (2012) 
 
A zonal model has been presented to spatially organize these 
rules in a metric framework (Brace et al., 2016; Garland et al., 

2018), where spherical regions are drawn concentrically around 
a focus agent, so that zones of repulsion (rule A), orientation (rule 
B) and aggregation (rule C) can be differentiated.  
 
This means in terms of figure 3, that the focus agent will steer: 
(A) to avoid collision with flockmates in the repulsion zone (red), 
(B) to align with flockmates in the orientation zone (blue) and 
(C) to stay close to flockmates in the aggregation zone (green). 
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Flockmates outside the aggregation zone are supposed to be 

imperceptible and, hence, of no relevance for the focus agent.     
 
 

 
 

Figure 3. Zonal model of collective movements based on the 
basic SPP model; modified from Brace et al. (2016) 

and Garland et al. (2018) 
 
The three basic rules shown in figure 2 have been extended by 

numerous authors during the last three decades: Considered have 
been, for instance, perturbation (Vicsek et al., 1995), social 
interaction (Strömbom, 2011; Garland et al., 2018), adhesion 
(Grégoire et al., 2003) or particle shape (Peruani et al., 2006). 
 

3. MODELLING OF COLLECTIVE BEHAVIOUR 

The basic SPP rules may lead, in the medium term, to a rather 
homogeneous and isotropic movement of each agent. Hence, in 
order to simulate a more natural behavior of virtual animal groups 
in an immersive environment, we propose to consider also 
theories of self-organized criticality (Bak, 1996). These concepts 
allow us to better represent cohesion and unity of real animal 

groups, where not just aggregation but also disintegration and 
reorganization can be observed under certain conditions.  
 
To achieve a behavior that maximizes the individual’s autonomy 
within a swarm we consider the following rules to model 
collective movement: 
    

1. Collision avoidance 

2. Polarization  
3. Aggregation 
4. Self-organized criticality 

 
While the first three rules, in accordance with the SPP model, 
define movement in a 3D space by linear and angular velocity, 
self-organized criticality helps us to interfere the transition 
between disordered to ordered behavior, thus introducing 
instability to simulate a less regular and more natural swarm 

movement. Based on the four rules mentioned above, we define 
the state of each agent at a given moment by the following 
variables:  
   

behavioural  

variables 

regional 

variables 

position velocity turning rate 
x_min 
x_max 
y_min 

y_max 
z_min 
z_max 

pos_x 
pos_y 
pos_z 

v_max 
v_min 
v_ang 

t_rate 
 
 

Table 1. Behavioural and regional variables used to model 
virtual agents’ movement in swarms  

We will discuss these variable in further detail subsequently and 

show how polarized non-colliding aggregate motion can be 
modelled for critically self-organized agents. 
 

3.1 Collision Avoidance 

Starting point for each agent’s (A) movement is the definition of 
cuboid regions in which the agent can move on the (positive and 
negative) X-, Y- and Z-axis. Regions, defined through regional 
variables (tab. 1) are a particular characteristic of GeoIVE as they 
represent ecosystems where a given species typically can be 
observed.  
 
In the case of a virtual coral reef, for instance, regions may 
represent the main reef zones and, thus, assign species to 

corresponding environments. For example, agents of a fish 
species that is typically found in the reef crest will only move in 
the virtual region representing the reef crest.    
 
Belonging to a predefined 3D region, an initial position is 
assigned to each agent Ak accordingly. Considering then the 
aforementioned instability of Ak, the agent’s linear (v_max, 
v_min) and angular (v_ang) velocity and turning rate (tab. 1)    

can vary randomly within a capsule-like surrounding volume V 

(fig. 4). Separation distance D of a given individual Ai is then 
defined in a way that no intersection with the separation distance 
of the closest agent Aj can occur:  
 

                                       
| 𝐴𝑗 − 𝐴𝑖 |

2
 ≤ 𝐷𝑖𝑗                       (1) 

 
where  Ai = [pos_xi, pos_yi, pos_zi] 
 Aj = [pos_xj, pos_yj, pos_zj] 

for n ∈ ∩ ℕ  
    

3.2 Polarization 

Organizing agents in terms of swarming behavior assumes that 
the individual direction vectors share a general alignment. To 
model such a collective directional movement, we introduce the 
concept of leadership.  
 

First we consider, for n ∈ ℕ, a swarm in terms of a set A: 
                                       

  𝐴 = {𝐴1 , 𝐴2 , … , 𝐴𝑖 , 𝐴𝑗, … , 𝐴𝑛}                            (2) 

 
where each agent Ak can be a possible leader AL. This 
configuration allows us to achieve a collective movement of a 

group following a single leader. In order to extend this approach 
towards multiple and different concepts of leadership (Garland et 
al., 2018) that may generate different, but still polarized behavior 
we can modify equation (2) to: 
 

 𝐴 = {𝐴𝐿 , 𝐴𝐿 , … , 𝐴𝑖 , 𝐴𝑗 , … , 𝐴𝑛}                                            (3) 

 
where AL are different leaders pertaining to set/swarm A, and 
where AL has smaller cardinality than A. 
 
It should be pointed out here that we can, in consequence of 
equation (3), even simulate swarms that are no longer polarized 

but still demonstrate collective movement: Whenever A’s 
cardinality equals the cardinality of AL, each agent becomes a 
leader AL. In such constellation all agents will follow each other, 
thus forming groups without following any leader in particular, 
this is: #(AL) = #(A).   
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-397-2018 | © Authors 2018. CC BY 4.0 License.

 
399



3.3 Aggregation  

Equation (1) establishes a minimum radius within which the 
variables defined in table 1 can be parametrized as a function of 
the natural behavior of the species represented. Turning rate and 
velocity parameters of fish, for instance, have to be specified 

(also in relation to other species of the same ecosystem) in order 
to provide a realistic behavior of the agents in the corresponding 
GeoIVE. Moreover, real-world flockmates aggregate on the 
swarm-level but, on the individual-level, usually do not move in 
a completely identical and synchronized manner.   
 
To simulate both aggregation on the collective (macro) level and 
randomness on the individual (micro) level, i.e. in the behavior 
of the virtual agents, the variables defined in table 1 can be 

modified independently for each agent Ai without affecting the 
behavior of a neighboring agent Aj by 
 

 𝑄 = {𝑥 | 𝑥 ∈ ℝ, 𝑥 ≤  
| 𝐴𝑗 − 𝐴𝑖 |

2
 ≤ 𝐷𝑖𝑗}   and 

 𝑃 = {𝑦 | 𝑦 ∈ ℝ, 𝑥 ≤  
| 𝐴𝑖 − 𝐴𝑗 |

2
 ≤ 𝐷𝑗𝑖}                           (4) 

 
where Q and P are two neighboring capsules V of agents Ai and 
Aj; to ensure that Ai cannot affect the behavioral variables of Aj 

(tab. 1), we set Q ∩ P ∅ for all x and y. 
 

3.4 Self-organized Criticality 

Self-organization is probably the most important characteristics 
of our approach to ensure a realistic simulation of real-world 
swarming behaviour, as it allows us to introduce a certain amount 

of chaos into the swarm system. This kind of noise is typical for 
animal swarms, whose individuals will usually differ slightly 
regarding size, shape and behaviour, even within the general 
patterns of the swarm they belong to. Hence, in a GeoIVE self-
organized criticality helps to avoid the unnatural impression of 
cloned agents with a cloned behaviour and thus facilitates the 
formation of spatial presence (cf. section 1.2). 
 
To include self-organization into our model, a critical point 

between instability and order is defined for all behavioral 
variables – on condition that the number of leaders AL shall be 
neither 0 nor 1:  
 

                             1 < #(𝐴𝐿) < #(𝐴)    (5) 
 
where A is a set of agents whose cardinality #(A) must be greater 
than the cardinality #(AL) of a set of leaders.  
 

4. EXAMPLE OF USE 

So far, we have applied the model outlined above on virtual 
schools of fish. Moreover, we simulated the movement of solitary 
animals (e.g. sea turtles, sharks) in a predefined region by 

considering only the rules of collision avoidance and self-
organized criticality. Since these tests have been realized within 
a GeoIVE of a submarine ecosystem, we will briefly discuss this 
particular setting subsequently.  
 

4.1 Area of Study 

The model outlined above has been applied to a GeoIVE of a 3.5 
x 3.5 km coral reef in the Mexican Caribbean, near the city of 
Cancun. This GeoIVE has been built upon information on 
bathymetry and benthic habitats derived from WorldView-2 
imagery and in-situ data. Species of reef fauna and flora were 
defined in accordance with the National Information System on 

Biodiversity (SNIB). The study area, methods of data acquisition 

and 3D modelling are presented in further detail in Hruby et al. 
(2018).  
 

4.2 Software Setting & Implementation 

As stated in section 1, game engines can serve as middleware to 
visualize GIS data within an immersive environment. In this 
project, Unreal Engine was used to build a GeoIVE and is 
therefore the software our model of collective movement has 
been tested on.  
 
In general terms, a simulation of collective movement of animal 
groups in a GeoIVE has to support accurately rigged and 
animated 3D species models. These 3D models have to be 

organized under the four rules defined earlier in this paper. 
Unreal Engine and comparable software (e.g. Unity) provide (to 
our best knowledge) no solution out-of-the-box (e.g. by particle 
systems, path animation or hierarchical instanced static meshes) 
for the modelling of collective but self-organized behaviour of 
highly detailed animated objects. Hence, we translated our model 
of a critically self-organized, polarized, non-colliding and 
aggregate motion into C++. The latest code is maintained on 

GitHub (Magallanes, 2018). However, the model has been 
discussed here in terms that should be general enough to allow 
for a transfer to other software environments as well. Figure 4 
shows an example of implementation:  
 

 
 

 
 

 
 

Figure 4. Implementation of collective movement in Unreal 
Engine under the rules of collision avoidance, 
polarization, aggregation and self-organized 
criticality: Circles visualize V for each agent            

Ai from different points of view.  
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5. CONCLUSION & OUTLOOK 

5.1 Results 

The model presented in this paper, yet work in progress, allowed 
us to populate a GeoIVE of a submarine ecosystem (cf. section 
4.1) with currently approx. 5000 agents representing 21 fish 
species. Following a set of four basic rules, these agents move 
autonomously across predefined regions (corresponding 
georeferenced real-world reef zones) in species-specific swarms 
of 2 to 25 members. As shown below, collective movement 

resulting from our model can produce regular and well-aligned 
groups (fig.5: above), but also rather irregular, yet aggregated, 
formations (fig.5: below) of critically self-organized agents. 

 

 
 

 
 

Figure 5. Collective movement of agents in a GeoIVE of a 
submarine ecosystem. Regular (above) and irregular 
(below) motion patterns produced by the rules of (1) 
collision avoidance, (2) polarization, (3) aggregation 

and (4) self-organized criticality 

 

5.2 Outlook 

Compared with path-animated solutions (cf. Hruby et al., 2018), 
time-savings and performance improvements of the present 

approach are considerable. However, in the face of swarming 
behavior of real animals several limitations are apparent: For 
instance, our current model neither considers (1) ecosystemic 
roles and relations of predator vs. prey (2) nor do the agents 
follow any natural stimulus (e.g. foraging). More complex 
algorithms will be necessary to amplify what we (deliberately) 
have called movement in the title to real behavior in terms of an 
artificial intelligence (AI); (cf. Asgari et al., 2016; Witkowski & 

Ikegami, 2016). 

5.3 Conclusion 

We started this paper by arguing that the formation of spatial 
presence within immersive VR systems can strengthen the users’ 
involvement with the issues visualized, which turns the feeling of 
being there into an important cognitive aspect for 

geovisualization matters. As we tried to show, presence also 
depends on high fidelity and realism, so that geovisualization 
immersive virtual environments (GeoIVE) will be typically 
display representations at a 1:1 scale. However, such a realism is 
not just a matter of highly detailed 3D models, but also of 
visualizing temporal change, e.g. movement, in a natural manner. 
Collective movement of animals, a basic manifestation of 
collective behaviour, was the aspect of a spatio-temporal 1:1 
scale we dedicated the main part of the paper to.  

 
Since Reynold’s boid concept (1987) a continuously growing 
number of models has been published to better formalize 
collective animal behaviour (Vicsek & Zafeiris, 2012).  
However, many of these models are rather designed to deeper 
understand general or particular aspects of behaviour, while 
(geo)visualization issues do not figure prominently as yet.  
 

Against this background we presented a viable implementation 
of a SPP model (extended by self-organized criticality) into a 
GeoIVE of a submarine ecosystem. The approach discussed in 
this text is still in process. However, even the current stage of 
development meets the basic demands of an immersive and 
realistic visualization of collective movement of several thousand 
agents. The model presented is currently applied in a GeoIVE of 
coral reef in the Mexican Caribbean.  

 
It is worth mentioning that our visualization of collective 
movement is built upon geospatial data (e.g. regarding benthic 
habitats and bathymetry), but without GIS software, which is due 
to the currently rather limited VR-capabilities of GIS. For 
example, modern GIS neither support VR output devices nor the 
rendering of atmospheric conditions and lighting. Considering, 
finally, that both GIS and game engine software lack the AI 

features necessary to model and visualize behaviour beyond 
simple rule based movement, turns the interrelationship between 
GIS, VR and AI into a promising field of future geovisualization 
research. 
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