6,879 research outputs found

    Source coding for transmission of reconstructed dynamic geometry: a rate-distortion-complexity analysis of different approaches

    Get PDF
    Live 3D reconstruction of a human as a 3D mesh with commodity electronics is becoming a reality. Immersive applications (i.e. cloud gaming, tele-presence) benefit from effective transmission of such content over a bandwidth limited link. In this paper we outline different approaches for compressing live reconstructed mesh geometry based on distributing mesh reconstruction functions between sender and receiver. We evaluate rate-performance-complexity of different configurations. First, we investigate 3D mesh compression methods (i.e. dynamic/static) from MPEG-4. Second, we evaluate the option of using octree based point cloud compression and receiver side surface reconstruction

    Low-latency Cloud-based Volumetric Video Streaming Using Head Motion Prediction

    Full text link
    Volumetric video is an emerging key technology for immersive representation of 3D spaces and objects. Rendering volumetric video requires lots of computational power which is challenging especially for mobile devices. To mitigate this, we developed a streaming system that renders a 2D view from the volumetric video at a cloud server and streams a 2D video stream to the client. However, such network-based processing increases the motion-to-photon (M2P) latency due to the additional network and processing delays. In order to compensate the added latency, prediction of the future user pose is necessary. We developed a head motion prediction model and investigated its potential to reduce the M2P latency for different look-ahead times. Our results show that the presented model reduces the rendering errors caused by the M2P latency compared to a baseline system in which no prediction is performed.Comment: 7 pages, 4 figure

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Geometric Prior Based Deep Human Point Cloud Geometry Compression

    Full text link
    The emergence of digital avatars has raised an exponential increase in the demand for human point clouds with realistic and intricate details. The compression of such data becomes challenging with overwhelming data amounts comprising millions of points. Herein, we leverage the human geometric prior in geometry redundancy removal of point clouds, greatly promoting the compression performance. More specifically, the prior provides topological constraints as geometry initialization, allowing adaptive adjustments with a compact parameter set that could be represented with only a few bits. Therefore, we can envisage high-resolution human point clouds as a combination of geometric priors and structural deviations. The priors could first be derived with an aligned point cloud, and subsequently the difference of features is compressed into a compact latent code. The proposed framework can operate in a play-and-plug fashion with existing learning based point cloud compression methods. Extensive experimental results show that our approach significantly improves the compression performance without deteriorating the quality, demonstrating its promise in a variety of applications

    Lossless Compression of Neuromorphic Vision Sensor Data Based on Point Cloud Representation

    Get PDF
    Visual information varying over time is typically captured by cameras that acquire data via images (frames) equally spaced in time. Using a different approach, Neuromorphic Vision Sensors (NVSs) are emerging visual capturing devices that only acquire information when changes occur in the scene. This results in major advantages in terms of low power consumption, wide dynamic range, high temporal resolution, and lower data rates than conventional video. Although the acquisition strategy already results in much lower data rates than conventional video, such data can be further compressed. To this end, in this paper we propose a lossless compression strategy based on point cloud compression, inspired by the observation that, by appropriately reporting NVS data in a (x,y,t)(x,y,t) tridimensional space, we have a point cloud representation of NVS data. The proposed strategy outperforms the benchmark strategies resulting in a compression ratio up to 30% higher for the considered

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor
    • …
    corecore