1,070 research outputs found

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable pĂșblic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Parametric Estimation of Handoff

    Full text link
    The efficiency of wireless technology depends upon the seamless connectivity to the user at anywhere any time.Heterogeneous wireless networks are an integration of different networks with diversified technologies. The most essential requirement for Seamless vertical handover is that the received signal strength should always be healthy. Mobile device enabled with multiple wireless technologies makes it possible to maintain seamless connectivity in highly dynamic environment.Since the available bandwidth is limited and the number of users is growing rapidly, it is a real challenge to maintain the received signal strength in a healthy stage.In this work, the proposed, cost effective parametric estimation for vertical handover shows that the received signal strength maintains a healthy level by considering the novel concept.Comment: 5 Pages,3 figures, NCCCS-12,ISBN:978-1-4673-2837-

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    A probabilistic threshold-based bandwidth sharing policy for wireless multirate loss networks

    Get PDF
    We propose a probabilistic bandwidth sharing policy, based on the threshold (TH) policy, for a single cell of fixed capacity in a homogeneous wireless cellular network. The cell accommodates random input-traffic originated from K service-classes. We distinguish call requests to new and handover, and therefore, the cell supports 2K types of arrivals. If the number of in-service calls (new or handover) of a service-class exceeds a threshold (different for new and handover calls of a service-class), a new or handover arriving call of the same service-class is not always blocked, as it happens in the TH policy, but it is accepted in the system with a predefined state-dependent probability. The cell is analyzed as a multirate loss system, via a reversible continuous-time Markov chain, which leads to a product form solution (PFS) for the steady state distribution. Thanks to the PFS, the calculation of performance measures is accurate, but complex. To reduce the computational complexity, we determine performance measures via a convolution algorithm

    Energy efficiency in heterogeneous wireless access networks

    Get PDF
    In this article, we bring forward the important aspect of energy savings in wireless access networks. We specifically focus on the energy saving opportunities in the recently evolving heterogeneous networks (HetNets), both Single- RAT and Multi-RAT. Issues such as sleep/wakeup cycles and interference management are discussed for co-channel Single-RAT HetNets. In addition to that, a simulation based study for LTE macro-femto HetNets is presented, indicating the need for dynamic energy efficient resource management schemes. Multi-RAT HetNets also come with challenges such as network integration, combined resource management and network selection. Along with a discussion on these challenges, we also investigate the performance of the conventional WLAN-first network selection mechanism in terms of energy efficiency (EE) and suggest that EE can be improved by the application of intelligent call admission control policies

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Design and Implementation of a Measurement-Based Policy-Driven Resource Management Framework For Converged Networks

    Full text link
    This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.Comment: in Ictact Journal On Communication Technology: Special Issue On Next Generation Wireless Networks And Applications, June 2011, Volume 2, Issue 2, Issn: 2229-6948(Online
    • 

    corecore