2,251 research outputs found

    Decoding the Encoding of Functional Brain Networks: an fMRI Classification Comparison of Non-negative Matrix Factorization (NMF), Independent Component Analysis (ICA), and Sparse Coding Algorithms

    Full text link
    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet mathematical constraints such as sparse coding and positivity both provide alternate biologically-plausible frameworks for generating brain networks. Non-negative Matrix Factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks for different constraints are used as basis functions to encode the observed functional activity at a given time point. These encodings are decoded using machine learning to compare both the algorithms and their assumptions, using the time series weights to predict whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. For classifying cognitive activity, the sparse coding algorithm of L1L1 Regularized Learning consistently outperformed 4 variations of ICA across different numbers of networks and noise levels (p<<0.001). The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy. Within each algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<<0.001). The success of sparse coding algorithms may suggest that algorithms which enforce sparse coding, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Compressive Sensing Using Iterative Hard Thresholding with Low Precision Data Representation: Theory and Applications

    Full text link
    Modern scientific instruments produce vast amounts of data, which can overwhelm the processing ability of computer systems. Lossy compression of data is an intriguing solution, but comes with its own drawbacks, such as potential signal loss, and the need for careful optimization of the compression ratio. In this work, we focus on a setting where this problem is especially acute: compressive sensing frameworks for interferometry and medical imaging. We ask the following question: can the precision of the data representation be lowered for all inputs, with recovery guarantees and practical performance? Our first contribution is a theoretical analysis of the normalized Iterative Hard Thresholding (IHT) algorithm when all input data, meaning both the measurement matrix and the observation vector are quantized aggressively. We present a variant of low precision normalized {IHT} that, under mild conditions, can still provide recovery guarantees. The second contribution is the application of our quantization framework to radio astronomy and magnetic resonance imaging. We show that lowering the precision of the data can significantly accelerate image recovery. We evaluate our approach on telescope data and samples of brain images using CPU and FPGA implementations achieving up to a 9x speed-up with negligible loss of recovery quality.Comment: 19 pages, 5 figures, 1 table, in IEEE Transactions on Signal Processin

    Unsupervised Network Pretraining via Encoding Human Design

    Full text link
    Over the years, computer vision researchers have spent an immense amount of effort on designing image features for the visual object recognition task. We propose to incorporate this valuable experience to guide the task of training deep neural networks. Our idea is to pretrain the network through the task of replicating the process of hand-designed feature extraction. By learning to replicate the process, the neural network integrates previous research knowledge and learns to model visual objects in a way similar to the hand-designed features. In the succeeding finetuning step, it further learns object-specific representations from labeled data and this boosts its classification power. We pretrain two convolutional neural networks where one replicates the process of histogram of oriented gradients feature extraction, and the other replicates the process of region covariance feature extraction. After finetuning, we achieve substantially better performance than the baseline methods.Comment: 9 pages, 11 figures, WACV 2016: IEEE Conference on Applications of Computer Visio

    Group-Lasso on Splines for Spectrum Cartography

    Full text link
    The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the field's noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finitely-parameterized (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that ``better'' explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Simulated tests corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronounced.Comment: Submitted to IEEE Transactions on Signal Processin
    corecore