141 research outputs found

    Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization

    Full text link
    This paper proposes an algorithmic framework for solving parametric optimization problems which we call adjoint-based predictor-corrector sequential convex programming. After presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance of the algorithm. Two variants of this algorithm are investigated. The first one can be used to solve nonlinear programming problems while the second variant is aimed to treat online parametric nonlinear programming problems. The local convergence of these variants is proved. An application to a large-scale benchmark problem that originates from nonlinear model predictive control of a hydro power plant is implemented to examine the performance of the algorithms.Comment: This manuscript consists of 25 pages and 7 figure

    A Semismooth Predictor Corrector Method for Real-Time Constrained Parametric Optimization with Applications in Model Predictive Control

    Full text link
    Real-time optimization problems are ubiquitous in control and estimation, and are typically parameterized by incoming measurement data and/or operator commands. This paper proposes solving parameterized constrained nonlinear programs using a semismooth predictor-corrector (SSPC) method. Nonlinear complementarity functions are used to reformulate the first order necessary conditions of the optimization problem into a parameterized non-smooth root-finding problem. Starting from an approximate solution, a semismooth Euler-Newton algorithm is proposed for tracking the trajectory of the primal-dual solution as the parameter varies over time. Active set changes are naturally handled by the SSPC method, which only requires the solution of linear systems of equations. The paper establishes conditions under which the solution trajectories of the root-finding problem are well behaved and provides sufficient conditions for ensuring boundedness of the tracking error. Numerical case studies featuring the application of the SSPC method to nonlinear model predictive control are reported and demonstrate the advantages of the proposed method

    A Parametric Non-Convex Decomposition Algorithm for Real-Time and Distributed NMPC

    Get PDF
    A novel decomposition scheme to solve parametric non-convex programs as they arise in Nonlinear Model Predictive Control (NMPC) is presented. It consists of a fixed number of alternating proximal gradient steps and a dual update per time step. Hence, the proposed approach is attractive in a real-time distributed context. Assuming that the Nonlinear Program (NLP) is semi-algebraic and that its critical points are strongly regular, contraction of the sequence of primal-dual iterates is proven, implying stability of the sub-optimality error, under some mild assumptions. Moreover, it is shown that the performance of the optimality-tracking scheme can be enhanced via a continuation technique. The efficacy of the proposed decomposition method is demonstrated by solving a centralised NMPC problem to control a DC motor and a distributed NMPC program for collaborative tracking of unicycles, both within a real-time framework. Furthermore, an analysis of the sub-optimality error as a function of the sampling period is proposed given a fixed computational power.Comment: 16 pages, 9 figure

    A Method to Guarantee Local Convergence for Sequential Quadratic Programming with Poor Hessian Approximation

    Full text link
    Sequential Quadratic Programming (SQP) is a powerful class of algorithms for solving nonlinear optimization problems. Local convergence of SQP algorithms is guaranteed when the Hessian approximation used in each Quadratic Programming subproblem is close to the true Hessian. However, a good Hessian approximation can be expensive to compute. Low cost Hessian approximations only guarantee local convergence under some assumptions, which are not always satisfied in practice. To address this problem, this paper proposes a simple method to guarantee local convergence for SQP with poor Hessian approximation. The effectiveness of the proposed algorithm is demonstrated in a numerical example

    Time-Varying Semidefinite Programming: Path Following a Burer-Monteiro Factorization

    Full text link
    We present an online algorithm for time-varying semidefinite programs (TV-SDPs), based on the tracking of the solution trajectory of a low-rank matrix factorization, also known as the Burer-Monteiro factorization, in a path-following procedure. There, a predictor-corrector algorithm solves a sequence of linearized systems. This requires the introduction of a horizontal space constraint to ensure the local injectivity of the low-rank factorization. The method produces a sequence of approximate solutions for the original TV-SDP problem, for which we show that they stay close to the optimal solution path if properly initialized. Numerical experiments for a time-varying max-cut SDP relaxation demonstrate the computational advantages of the proposed method for tracking TV-SDPs in terms of runtime compared to off-the-shelf interior point methods.Comment: 24 pages, 3 figure

    On-board Trajectory Computation for Mars Atmospheric Entry Based on Parametric Sensitivity Analysis of Optimal Control Problems

    Get PDF
    This thesis develops a precision guidance algorithm for the entry of a small capsule into the atmosphere of Mars. The entry problem is treated as nonlinear optimal control problem and the thesis focuses on developing a suboptimal feedback law. Therefore parametric sensitivity analysis of optimal control problems is combined with dynamic programming. This approach enables a real-time capable, locally suboptimal feedback scheme. The optimal control problem is initially considered in open loop fashion. To synthesize the feedback law, the optimal control problem is embedded into a family of neighboring problems, which are described by a parameter vector. The optimal solution for a nominal set of parameters is determined using direct optimization methods. In addition the directional derivatives (sensitivities) of the optimal solution with respect to the parameters are computed. Knowledge of the nominal solution and the sensitivities allows, under certain conditions, to apply Taylor series expansion to approximate the optimal solution for disturbed parameters almost instantly. Additional correction steps can be applied to improve the optimality of the solution and to eliminate errors in the constraints. To transfer this strategy to the closed loop system, the computation of the sensitivities is performed with respect to different initial conditions. Determining the perturbation direction and interpolating between sensitivities of neighboring initial conditions allows the approximation of the extremal field in a neighborhood of the nominal trajectory. This constitutes a locally suboptimal feedback law. The proposed strategy is applied to the atmospheric entry problem. The developed algorithm is part of the main control loop, i.e. optimal controls and trajectories are computed at a fixed rate, taking into account the current state and parameters. This approach is combined with a trajectory tracking controller based on the aerodynamic drag. The performance and the strengthsa and weaknesses of this two degree of freedom guidance system are analyzed using Monte Carlo simulation. Finally the real-time capability of the proposed algorithm is demonstrated in a flight representative processor-in-the-loop environment
    • …
    corecore