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Abstract

This thesis develops a precision guidance algorithm for the entry of a small capsule into the
atmosphere of Mars. The entry problem is treated as nonlinear optimal control problem
and the thesis focuses on developing a suboptimal feedback law. Therefore parametric
sensitivity analysis of optimal control problems is combined with dynamic programming.
This approach enables a real-time capable, locally suboptimal feedback scheme.
The optimal control problem is initially considered in open loop fashion. To synthesize
the feedback law, the optimal control problem is embedded into a family of neighboring
problems, which are described by a parameter vector. The optimal solution for a nominal
set of parameters is determined using direct optimization methods. In addition the direc-
tional derivatives (sensitivities) of the optimal solution with respect to the parameters are
computed. Knowledge of the nominal solution and the sensitivities allows, under certain
conditions, to apply Taylor series expansion to approximate the optimal solution for dis-
turbed parameters almost instantly. Additional correction steps can be applied to improve
the optimality of the solution and to eliminate errors in the constraints.
To transfer this strategy to the closed loop system, the computation of the sensitivities
is performed with respect to different initial conditions. Determining the perturbation
direction and interpolating between sensitivities of neighboring initial conditions allows the
approximation of the extremal field in a neighborhood of the nominal trajectory. This
constitutes a locally suboptimal feedback law.
The proposed strategy is applied to the atmospheric entry problem. The developed algo-
rithm is part of the main control loop, i.e. optimal controls and trajectories are computed
at a fixed rate, taking into account the current state and parameters. This approach is
combined with a trajectory tracking controller based on the aerodynamic drag.
The performance and the strengths’ and weaknesses of this two degree of freedom guidance
system are analyzed using Monte Carlo simulation. Finally the real-time capability of the
proposed algorithm is demonstrated in a flight representative processor-in-the-loop environ-
ment.
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Abstract

In dieser Arbeit wird ein Flugführungsalgorithmus für den Eintritt einer Kapsel in die
Marsatmosphäre entwickelt. Die rahmengebenden Bedingungen werden als Optimalsteu-
erungsproblem aufgefasst und der Schwerpunkt der Arbeit liegt auf der Entwicklung eines
suboptimalen Regelgesetzes für nicht lineare dynamische Systeme. Dazu wird die parame-
trische Sensitivitätsanalyse von Optimalsteuerungsproblemen kombiniert mit dynamischer
Programmierung. Dieser Ansatz ermöglicht die Auswertung eines lokal suboptimalen Rück-
führgesetzes in Echtzeit.
Das Problem wird zunächst im offenen Regelkreis betrachtet. Zur Synthese des Regelgeset-
zes wird das Optimalsteuerungsproblem eingebettet in eine Familie benachbarter Probleme,
die durch einen Parametersatz beschrieben werden. Die optimale Lösung wird durch Metho-
den der direkten Optimierung für einen Satz nomineller Parameter bestimmt und zusätzlich
werden die direktionalen Ableitungen (Sensitivitäten) der optimalen Lösung gegenüber den
Parametern berechnet. Die Kenntnis der nominellen Lösung sowie deren Ableitungen er-
laubt unter gewissen Voraussetzungen die Anwendung der Taylorentwicklung zur schnellen
Approximation der optimalen Lösung für gestörte Parameter. Zusätzlich können weitere
Korrekturschritte ausgeführt werden, um die Approximation zu verbessern und Fehler in
den Beschränkungen zu eliminieren.
Zur Übertragung dieser Strategie auf den geschlossenen Regelkreis werden die Sensitivitäten
für unterschiedliche Anfangsbedingungen berechnet. Die Bestimmung der Störrichtung und
die Interpolation zwischen Sensitivitätsableitungen benachbarter Anfangsbedingungen er-
möglichen die Approximation des Extremalfeldes in einer Umgebung der nominellen Tra-
jektorie, und damit eine suboptimale Regelung.
Die vorgeschlagene Strategie wird angewandt auf das Problem der Flugführung während
des Eintritts in die Atmosphäre. Der Führungsalgorithmus ist dabei Teil des geschlosse-
nen Regelkreises, so dass in einem regelmäßigen Takt optimale Steuerungen und Zustand-
strajektorien für den aktuellen Zustand berechnet werden. Dieser Ansatz wird kombiniert
mit einer Trajektorienfolgeregelung, basierend auf der Messung des aerodynamischen Strö-
mungswiderstands.
Die Leistungsfähigkeit und die Stärken und Schwächen dieses Regelungssystems werden mit
Hilfe einer Monte Carlo Simulation analysiert. Abschließend wird die Echtzeitfähigkeit des
Algorithmus durch Laufzeittests auf einem für Weltraumexplorationsmissionen geeigneten
Computersystem nachgewiesen.

Schlagworte: Echtzeitoptimalsteuerung, parametrische Sensitivitätsanalyse, Wiederein-
tritt, Flugführung

e





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Guidance, Navigation and Control . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Mars Entry, Descent and Landing . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Atmospheric Entry of the Mars Science Laboratory . . . . . . . . . . . 5
1.5.2 EDL Requirements for Future Mars Missions . . . . . . . . . . . . . . . 5

2 A Mathematical Model for Planetary Atmospheric Flight 7
2.1 Aerodynamic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Atmosphere Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Entry Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Gravity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Translational Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Energy Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Path Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Aerodynamic Attitude and Wind . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Entry Guidance and Control Concepts 17
3.1 Drag Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Feedback Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Drag Tracking in the Energy Domain . . . . . . . . . . . . . . . . . . . 21
3.1.3 Induced Time Domain Gain Scheduling . . . . . . . . . . . . . . . . . . 24
3.1.4 Cross Range Control and Bank Angle Command Generation . . . . . . 25
3.1.5 Drag Tracking Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Other Approaches to Entry Guidance and Control . . . . . . . . . . . . . . . 26
3.2.1 Multi-Variable Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Numeric Predictor-Corrector Guidance . . . . . . . . . . . . . . . . . . 27
3.2.3 Moving Horizon Control . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Challenges of Atmospheric Entry Guidance . . . . . . . . . . . . . . . . . . . 30

4 Preliminaries of Optimal Control and Optimization Theory 33
4.1 Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Formulation of Optimal Control Processes . . . . . . . . . . . . . . . . 33

i



ii Contents

4.1.2 Problem Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Mayer Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Lagrange Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Fixed Final Time Transformation . . . . . . . . . . . . . . . . . . . . . 37
Autonomy Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Dynamic Programming in Continuous Time . . . . . . . . . . . . . . . 38
4.1.4 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.5 The Connection between DP and PMP . . . . . . . . . . . . . . . . . . 44

4.2 Static Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Local Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Solution of Nonlinear Programs with Sequential Quadratic Programming 47
4.2.3 Relationship Between the Lagrange Multipliers and the Optimal Value . 48

4.3 Indirect and Direct Optimization Methods . . . . . . . . . . . . . . . . . . . . 48
4.4 Direct Transcription Using the Shooting Method . . . . . . . . . . . . . . . . 49

4.4.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Single Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Multiple Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Formulation as Nonlinear Program . . . . . . . . . . . . . . . . . . . . . 53

5 Real-Time Approximation of Optimal Controls Using Parametric Sen-
sitivities 55
5.1 Parametric Optimal Problem and Parametric Sensitivity . . . . . . . . . . . . 56
5.2 Parametric Sensitivity Analysis of Nonlinear Programs . . . . . . . . . . . . . 57
5.3 Real-Time Approximation of NLP Solutions . . . . . . . . . . . . . . . . . . . 60

5.3.1 Taylor Expansion of the Nominal NLP Solution . . . . . . . . . . . . . 60
5.3.2 Iterative Feasibility and Optimality Restoration . . . . . . . . . . . . . 61

5.4 Instructive Example: Control of a Rocket Car . . . . . . . . . . . . . . . . . . 63
5.4.1 Nominal Solution and Parametric Sensitivities . . . . . . . . . . . . . . 64
5.4.2 Real-Time Solution Approximation . . . . . . . . . . . . . . . . . . . . 66

5.5 Exploring Parametric-Sensitivity-Based Control . . . . . . . . . . . . . . . . . 67
5.5.1 Discretization of the State Functions . . . . . . . . . . . . . . . . . . . 67
5.5.2 Special Case: Linearly Perturbed and Linearly Constrained Quadratic

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.3 Convergence Verification at Runtime . . . . . . . . . . . . . . . . . . . 75
5.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Constancy of the Active Set . . . . . . . . . . . . . . . . . . . . . . . . 76
Convergence of the Feasibility Restoration Iteration . . . . . . . . . . . 79

5.6 Closed loop Near-Optimal Feedback in the Neighborhood of a Nominal Tra-
jectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6.1 An Advantageous Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.2 Data Reduction Through Dynamic Programming . . . . . . . . . . . . . 87
5.6.3 Interpolation of Parametric Sensitivities . . . . . . . . . . . . . . . . . . 90
5.6.4 Synthesis Conclusion and Pseudo Code Statement . . . . . . . . . . . . 94

6 On-Board Trajectory Computation for Mars Atmospheric Entry 97
6.1 Mars Entry Reference Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 97



Contents iii

6.2 Formulation of the Optimal Control Problem . . . . . . . . . . . . . . . . . . 98
6.2.1 Final Boundary Constraints . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Perturbation Parametrization . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.4 Time Domain Problem Statement . . . . . . . . . . . . . . . . . . . . . 102
6.2.5 Energy Domain Problem Statement . . . . . . . . . . . . . . . . . . . . 104

6.3 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.1 Nominal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 Parametric Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 111

Parametric Sensitivity of the Open Loop Solution . . . . . . . . . . . . 111
Parametric Sensitivities For Closed Loop Control . . . . . . . . . . . . . 114

6.3.3 Correction Space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 117
Hypersonic Re-Entry (Interval from 0 to 0.3) . . . . . . . . . . . . . . . 122
Deceleration Phase (Interval from 0.3 to 0.65) . . . . . . . . . . . . . . 122
Supersonic Phase (Interval from 0.65 to 1) . . . . . . . . . . . . . . . . 122
Comparison of the Correction Space for Time and Energy Discretization 123
Other Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Two Degree of Freedom Guidance System . . . . . . . . . . . . . . . . . . . . 124
6.5 Numerical Verification and Validation . . . . . . . . . . . . . . . . . . . . . . 126

6.5.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Environment and Perturbations . . . . . . . . . . . . . . . . . . . . . . 127
GNC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5.2 LEON2 Processor in the Loop Test . . . . . . . . . . . . . . . . . . . . 135

7 Conclusion 139
7.1 Entry Guidance Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Way Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3 Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 143

Appendices 147

A Coordinate Reference Frames 147

B Spaces and Norms 149

C Strong and Weak Minima 152

D Factorized Form of the Drag Dynamics 153

E NLP Formulation Details 154
E.1 Variable Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
E.2 Constraint Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



iv Contents

F NLP Scaling 157

G Entry Optimal Control Problem: Objective Function Weights 159

H Algorithm for the Approximation of the Correction Space Boundary 160



List of Abbreviations

Notation Description

CoM center of mass

DP dynamic programming

EDL entry, descent and landing

GNC guidance, navigation and control

KKT Karush-Kuhn-Tucker

LQR linear quadratic regulator

MP Minimum Principle

MPC model predictive control

MPL Mars Precision Lander

NLP nonlinear program

OCP optimal control problem

ODE ordinary differential equation

PDE partial differential equation

PMP Pontryagin’s Minimum (Maximum) Principle

PoO Principle of Optimality

PS parametric sensitivity

PSA parametric sensitivity analysis

QP quadratic program

RASTA Reference Architecture System Test-Bed for Avionics

SDP semidefinite program

SOCP second order cone program

SQP sequential quadratic programming

vLoD vertical lift-over-drag

v



vi



Contents vii

List of Symbols

Script Semantics
Symbols may have an overset, topscript and subscript which have the following semantics:
Oversets mark special properties. Topscripts in round brackets denote the position of an
element within it’s parent structure. Topscripts in square brackets are iteration counters
or derivative orders. Subscripts are used as descriptors (multiple subscripts are separated
by commas). The following is a list of the most commonly used scripts throughout the thesis:

⋆

(·) Optimality
(̃·) Approximation
(·)[𝑘] Iteration counter or Lie derivative order
(·)(𝑖) ∈ R, (·) ∈ R𝑛 Ordered set/vector element at position 𝑖, 1 ≤ 𝑖 ≤ 𝑛

(·)(𝑖,𝑗) ∈ R, (·) ∈ R𝑛 × R𝑚 Matrix element in row 𝑖, column 𝑗, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚

(·)(𝑖,:) ∈ R𝑚, (·) ∈ R𝑛 × R𝑚 Row vector 𝑖, 1 ≤ 𝑖 ≤ 𝑛

(·)(:,𝑗) ∈ R𝑛, (·) ∈ R𝑛 × R𝑚 Column vector 𝑗, 1 ≤ 𝑗 ≤ 𝑚

(·)0 Nominal value
(·)𝑠 Start/initial value
(·)𝑓 Final/terminal value
(·)𝑎 Belonging to the active set

Derivative Notation
Let 𝑓 : R𝑛𝑥 × R𝑛𝑦 → R and 𝑔 : R𝑛𝑥 × R𝑛𝑦 → R𝑛 be sufficiently differentiable functions for
𝑥 ∈ R𝑛𝑥 and 𝑦 ∈ R𝑛𝑦 . Furthermore let 𝑉 : R𝑛𝑥 × R𝑛𝑥 be a differentiable vector field. The
following notations are used to describe derivatives:

∇𝑥𝑓(𝑥,𝑦) :=
(︂

∂𝑓

∂𝑥(1)
(𝑥,𝑦), ..., ∂𝑓

∂𝑥(𝑛𝑥)
(𝑥,𝑦)

)︂
∇𝑥𝑓(𝑥0,𝑦0) := (∇𝑥𝑓(𝑥,𝑦)) |𝑥=𝑥0, 𝑦=𝑦0 ∈ R𝑛𝑥

∇2
𝑦𝑥𝑓(𝑥0,𝑦0) :=

⎛⎜⎝∇𝑥 (∇𝑦𝑓(𝑥0,𝑦0))(1)

...
∇𝑥 (∇𝑦𝑓(𝑥0,𝑦0))(𝑛𝑦)

⎞⎟⎠ ∈ R𝑛𝑦 × R𝑛𝑥

∇𝑥𝑔(𝑥0,𝑦0) :=

⎛⎜⎝∇𝑥𝑔
(1)(𝑥0,𝑦0)

...
∇𝑥𝑔

(𝑛)(𝑥0,𝑦0)

⎞⎟⎠ ∈ R𝑛 × R𝑛𝑥

∇2
𝑦𝑥𝑔(𝑥0,𝑦0) :=

⎛⎜⎝∇𝑦(∇𝑥𝑔
(1)(𝑥0,𝑦0))(1) . . . ∇𝑦(∇𝑥𝑔

(1)(𝑥0,𝑦0))(𝑛𝑥)

... . . . ...
∇𝑦(∇𝑥𝑔

(𝑛)(𝑥0,𝑦0))(1) . . . ∇𝑦(∇𝑥𝑔
(𝑛)(𝑥0,𝑦0))(𝑛𝑥)

⎞⎟⎠ ∈ R𝑛 × R𝑛𝑥 × R𝑛𝑦

𝐿𝑉 𝑓(𝑥,𝑦) := ⟨∇𝑥𝑓(𝑥,𝑦), 𝑉 (𝑥)⟩ (Lie derivative) ∈ R



viii Contents

Planetary Atmospheric Flight
𝑟 m Distance from spacecraft to planetary center
ℎ m Altitude
𝜆 rad Longitude
𝜙 rad Geocentric latitude
𝑣 m

s Speed
𝛾 rad Flight path angle
𝜒 rad Heading angle (measured positive from north to east)
𝑞 Pa Dynamic pressure
𝜌 kg

m3 Atmospheric or fluid density
𝜌0

kg
m3 Atmospheric density at sea-level

𝜌exp
kg
m3 Exponential atmosphere model

ℎ𝑠 m Scaled height
𝑣atm

m
s Relative speed between atmosphere and object

𝑣gnd
m
s Relative speed between ground and object

𝑣wnd
m
s Relative speed between atmosphere and ground

𝐹𝐿 N Lift force
𝐹𝐷 N Drag force
𝐿 m

s2 Lift acceleration
𝐷 m

s2 Drag acceleration
𝐶𝐿 [-] Aerodynamic lift coefficient
𝐶𝐷 [-] Aerodynamic drag coefficient
𝑆 m2 Aerodynamic reference area
𝑟𝑛 m Effective nose radius
𝑚 kg Vehicle total wet mass
𝑐 m

s Local speed of sound
𝑀 [-] Mach number
𝛼 rad Angle of attack
𝛽 rad Angle of sideslip
𝜎 rad Bank angle
𝑀 kg Mass of celestial body
𝐺 m3 s2

kg Gravitational constant
𝜇𝑀

m3

s2 Mars gravitational constant
𝑟𝑀 m Mars radius (spherical approximation)
𝛺𝑀

rad
s Mars rotation rate

𝐸tot J Total mechanical energy
𝐸kin J Kinetic energy
𝐸pot J Potential energy
𝐸 J Specific mechanical energy of the vehicle with respect to the

planets surface
𝑄̇ W

m2 Convective heating at stagnation point (heat flux density)
𝑘𝑝

√
𝑘𝑔/m Sutton-Graves constant for the Martian atmosphere

𝑛 [-] Load factor
𝑔𝐸

m
s2 Earth gravitational acceleration at sea-level



Contents ix

Drag Tracking and Feedback Linearization
𝑅𝑟 Reference (desired) range
𝐷𝑟 Reference drag acceleration

𝐿[𝑘]
𝑉 𝐶(𝑥) 𝑘-th Lie derivative of a function 𝐶 along a vector field 𝑉

𝑟 Relative degree of the output
𝑇 Coordinate transformation

𝑢vLoD Vertikal lift-over-drag ratio (as determined by the bank angle)
𝑢com Commanded vertikal lift-over-drag ratio
𝜈 Outer loop control (input to feedback linearized system)

𝐾𝑃 Proportional gain
𝐾𝐷 Derivative gain
𝐾𝐼 Integral gain
𝜔𝑛 Undamped natural frequency
𝜁 damping ratio

Optimal Control Processes

𝑛𝑥 ∈ N Dimension of the state vector function
𝑛𝑢 ∈ N Dimension of the control vector function
𝑛𝑐 ∈ N Dimension of the path constraint vector function
𝑛𝑝 ∈ N Dimension of the perturbation vector
𝑡 ∈ [𝑡𝑠; 𝑡𝑓 ] Independent variable, called time
𝑡𝑠 ∈ R Start time
𝑡𝑓 ∈ R Final time
𝑡𝑑 := 𝑡𝑓 − 𝑡𝑠 Process duration
𝐿∞ Lebesque Space, see Appendix B

𝑊 1,∞ Sobolev Space, see Appendix B
U(𝑡) ⊂ R𝑛𝑢 Admissible control vectors at a fixed time 𝑡
X(𝑡) ⊂ R𝑛𝑥 Admissible state vectors at a fixed time 𝑡
𝑢(𝑡) ∈ U(𝑡) Control vector at time 𝑡
𝑥(𝑡) ∈ X(𝑡) State vector at time 𝑡
𝜇(𝑡) ∈ R𝑛𝑥 Adjoint vector at time 𝑡
𝑓 System dynamic
𝑐 Mixed state and control constraints
𝐽 Cost or objective functional
𝑚 Meyer term of the objective functional
𝑙 Lagrange term of the objective functional

S𝑓 ⊂ R𝑛𝑥 Target set, smooth manifold
𝜓𝑠 Initial condition
𝑛𝑟𝑠

∈ N Dimension of the initial condition 𝜓𝑠

𝜓𝑓 Final condition
𝑛𝑟𝑓

∈ N Dimension of the final condition 𝜓𝑓

𝜏 ∈ [0; 1] Normalized time
𝑉 Optimal attainable value function
𝑉̇ Optimal value function time derivative

∇𝑥𝑠
𝑉 Gradient of 𝑉 with respect to the initial state 𝑥𝑠



x Contents

∇2
𝑥𝑠𝑥𝑠

𝑉 Hessian of 𝑉 with respect to the initial state 𝑥𝑠

𝐻 Hamiltonian function
∇𝑥𝐻 Gradient of 𝐻 with respect to the state 𝑥
𝜇abn ∈ R Abnormal multiplier
𝜅 Control as function of the state and adjoint

Nonlinear Optimization

𝑛𝑧 ∈ N Dimension of the optimization vector
𝑛𝑝 ∈ N Dimension of the perturbation vector
𝑛𝑔 ∈ N Number of constraints
𝑛𝑎 ∈ N Number of active constraints
𝑧 ∈ R𝑛𝑧 Vector of primal optimization variables
𝑓 Objective function
𝑔 Constraint function
𝐿 Lagrange function
𝜇 ∈ R𝑛𝑔 Vector of Lagrange multipliers

𝑎(𝑧) Set of active constraints indices
g𝑎 Vector function of the active constraints
𝜇𝑎 ∈ R𝑛𝑎 Vector of active Lagrange multipliers

Discrete Optimal Control Processes and Direct Transcription

ℎ ∈ R Integration step size
𝑇𝑢 ⊂ [0; 1] Set of discretization points of the control functions
𝑇𝑥 ⊂ [0; 1] Set of discretization points of the state functions
𝑇𝑐 ⊂ [0; 1] Set of discretization points of the path constraint func-

tions
𝑇𝑠 := 𝑇𝑥∖{1} Shooting nodes
𝜏 (𝑖) ∈ 𝑇𝑢 Discrete point of the normalized time 𝜏
𝑙𝑢 ∈ N Length of the control grid 𝑇𝑢

𝑙𝑥 ∈ N Length of the state grid 𝑇𝑥

𝑙𝑐 ∈ N Length of the constraint grid 𝑇𝑐

𝑢(𝜏 (𝑖)) ∈ R𝑛𝑢 Control vector at 𝜏 (𝑖)

𝑥(𝜏 (𝑖)) ∈ R𝑛𝑥 State vector at 𝜏 (𝑖)

𝑥̃(𝜏 (𝑖)) ∈ R𝑛𝑥 State vector at 𝜏 (𝑖) obtained by integration of the con-
trol function

𝑆𝑘 Shooting interval [𝜏 (𝑘); 𝜏 (𝑘+1)], 𝜏 (𝑘) ∈ 𝑇𝑥

𝑙𝑆𝑘 ∈ N Number of control grid points in shooting interval 𝑆𝑘

𝑑 ∈ R Continuity defect of a state trajectory
𝐷 ∈ R(𝑙𝑥−1)𝑛𝑥 All continuity defects of all state trajectories
𝑛𝑑 ∈ N Number of state defect constraints
𝑈 ∈ R𝑙𝑢 × R𝑛𝑢 Control vectors at all 𝜏 (𝑖) ∈ 𝑇𝑢

𝑋 ∈ R𝑙𝑥 × R𝑛𝑥 State vectors at all 𝜏 (𝑖) ∈ 𝑇𝑥

𝑋̃𝑆𝑘
∈ R𝑙𝑆𝑘 × R𝑛𝑥 State traj. from integration on shooting interval 𝑆𝑘

𝑥̃(𝑖,𝑗)
𝑆𝑘

∈ 𝑋̃𝑆𝑘
Value of state func. 𝑗 after 𝑖−1 integration steps in 𝑆𝑘

𝑥̃(𝑖,:)
𝑆𝑘

∈ 𝑋̃𝑆𝑘
State vector after 𝑖− 1 integration steps in 𝑆𝑘



Contents xi

𝐶 ∈ R𝑙𝑐𝑛𝑐 Vector of the discretized path constraints
𝛹 ∈ R𝑛𝑟𝑠 +𝑛𝑟𝑓 Vector of the boundary conditions 𝜓𝑠 and 𝜓𝑓

𝐴 ∈ R𝑛𝑧 × R𝑛𝑧 Diagonal matrix of the NLP variable scale factors
𝐵 ∈ R𝑛𝑧 × R𝑛𝑧 Diagonal matrix of the NLP constraint scale factors

𝑎(1)
𝑥 ,...,𝑎(𝑛𝑥)

𝑥 ∈ R Scale factors of the discretized state equations
𝑎(1)

𝑢 ,...,𝑎(𝑛𝑢)
𝑢 ∈ R Scale factors of the discretized control equations

𝑏(1)
𝑐 ,...,𝑏(𝑛𝑐)

𝑐 ∈ R Scale factors of the disc. path constraint equations
𝛼 ∈ R Scale factor of the objective function

Parametric Optimal Control Processes and Real-Time Optimal Control Approximation

𝑝 ∈ R𝑛𝑝 Parameter vector
𝑝0 ∈ R𝑛𝑝 Nominal value of the parameter 𝑝
𝑛𝑝 ∈ N Dimension of the parameter vector 𝑝
𝑞 ∈ R𝑛𝑔 Parameter vector that linearly enters the NLP con-

straint function
𝑞0 ∈ R𝑛𝑔 Nominal value of the parameter 𝑞
𝛥𝑝 := 𝑝− 𝑝0 Perturbation of the parameter 𝑝
𝛥𝑞 := 𝑞 − 𝑞0 Perturbation of the parameter 𝑞

⋆
𝑧 ∈ R𝑛𝑧 Vector of optimal primal variables
⋆
𝜇 ∈ R𝑛𝑔 Vector of optimal dual variables

⋆
𝑧0 = ⋆

𝑧(𝑝0) ∈ R𝑛𝑧 Optimal primal variables at the nominal parameter
value

⋆
𝜇𝑎(𝑝0) ∈ R𝑛𝑎 Optimal dual variables of active constraints at the nom-

inal parameter value
⋆
𝑧(𝑝) ∈ R𝑛𝑧 Optimal primal variables at the disturbed parameter

value
𝑧(𝑝) ∈ R𝑛𝑧 Approximation of the optimal primal variables at the

disturbed parameter value
𝑢̃(𝑝) ⊂ 𝑧(𝑝) Approximation of the optimal control sequence at the

disturbed parameter value
𝑥̃(𝑝) ⊂ 𝑧(𝑝) Approximation of the optimal state trajectory at the

disturbed parameter value
N0(𝑝0) ⊂ R𝑛𝑝 Sensitivity neighborhood of 𝑝0

𝑝(𝑚,𝑗) ∈ R Approximative value of 𝑝(𝑗) at which 𝑔(𝑚) switches from
active to inactive or vice versa

𝐼 (𝑚,𝑗) Approximation of the interval around 𝑝(𝑗)
0 in which con-

straint 𝑔(𝑚) does not switch from active to inactive or
vice versa

𝐴(𝑗)(𝑝0) Approximation of the interval in which the active set
remains unchanged for a perturbation in 𝑝(𝑗)

0

A(𝑝0) ⊂ R𝑛𝑝 Approximation of the neighborhood in which the active
set remains unchanged for a perturbation in 𝑝0

𝛥
max
𝑝(𝑗) ∈ R Approximation of the maximal absolute deviation of

𝑝(𝑗) from 𝑝(𝑗)
0 without causing a change of the active set



xii Contents

Closed Loop Near-Optimal Feedback in the Neighborhood of a Nominal Trajectory

𝑡 ∈ [0; 𝑡𝑑] Closed loop time, defined as zero at the beginning of
the process.

𝑡𝑑 ∈ R+ Closed loop duration and terminal time (not known a
priori)

𝑥(𝑡) ⊂ R𝑛𝑥 Closed loop state trajectory (not known a priori)
𝑡(𝑖) ∈ [0; 𝑡𝑑] Discrete closed loop time point
𝑇𝑐𝑙 ⊂ [0; 𝑡𝑑] Discrete points 𝑡(1),...,𝑡(𝑙𝑇 ) of closed loop time

𝑝(𝑡(𝑖)) ∈ R𝑛𝑝 Parameter vector at 𝑡(𝑖), excluding the closed loop state
𝑝(𝑡(𝑖)) ∈ R𝑛𝑝 Parameter vector at 𝑡(𝑖), including the closed loop state

𝑡𝑖 ∈ [0; 𝑡𝑖,𝑔𝑜] Open loop time of OCP(5.45)(𝑝(𝑖))
𝑡𝑖,𝑔𝑜 ∈ R Duration of OCP(5.45)(𝑝(𝑖))
𝜏𝑖 ∈ [0; 1] Normalized open loop time of OCP(5.45)(𝑝(𝑖))

𝑇𝑛𝑜𝑚 ∈ [0; 1] Discrete normalized time points 𝜏 (1),...,𝜏 (𝑙𝑝)

𝑃𝑛𝑜𝑚 ⊂ R𝑛𝑝 Parameters values at 𝑇𝑛𝑜𝑚

𝑝(𝑟)
0 ∈ 𝑃𝑛𝑜𝑚 Closest nominal parameter value

N(𝑖) ⊂ R𝑛𝑝 Convergence neighborhood of the RTS algorithm
around 𝑝0(𝜏 (𝑖))

B(𝑖) ⊂ U(𝑖) Ball around 𝑝0(𝜏 (𝑖))
C ⊂ R𝑛𝑝 Controllable space



List of Figures

1.1 Guidance, navigation and control loop . . . . . . . . . . . . . . . . . . . . . 4
1.2 MSL entry, descent and landing sequence . . . . . . . . . . . . . . . . . . . . 6

2.1 Entry capsule schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Spatial relation of the state variables . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Relationships between air path angles . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Categorization of guidance methods . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Relationship between the aerodynamic forces and range . . . . . . . . . . . . 18
3.3 Model predictive control scheme . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Single and multiple shooting (Euler) . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Single and multiple shooting (RK4) . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Classes of optimization problems . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Rocket car schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Rocket car: nominal solution and parametric sensitivities . . . . . . . . . . . 65
5.4 Rocket car: real-time approximation (single shooting) . . . . . . . . . . . . . 66
5.5 Rocket car: differences of SS and FD . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Rocket car: effect of state discretization on the RTS . . . . . . . . . . . . . . 70
5.7 Rocket car: RTS iteration comparison . . . . . . . . . . . . . . . . . . . . . . 71
5.8 Rocket car: Fix-point comparison . . . . . . . . . . . . . . . . . . . . . . . . 72
5.9 Rocket car: special case linearily constraint quadratic problem . . . . . . . . 75
5.10 Boundary arc schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.11 Nearest neighbor function based on weighted euclidean distance . . . . . . . 85
5.12 Nearest neighbor pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.13 Rocket car: sensitivity at different points of the nominal trajectory . . . . . 89
5.14 Rocket car: sensitivity interpolation . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 RTS preparation phase schematic . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Mars entry: nominal control function . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Mars entry: nominal state trajectory . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Mars entry: path constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Mars entry: sensitivity against perturbations in the initial state . . . . . . . 112
6.6 Mars entry: sensitivity against perturbations in the final state . . . . . . . . 113
6.7 Mars entry: sensitivity against perturbations in the model . . . . . . . . . . 113
6.8 Mars entry: sensitivity interpolation . . . . . . . . . . . . . . . . . . . . . . . 116

xiii



xiv List of Figures

6.9 Mars entry: correction space vs. feasible space (1) . . . . . . . . . . . . . . . 119
6.10 Mars entry: correction space vs. feasible space (2) . . . . . . . . . . . . . . . 120
6.11 Mars entry: correction space vs. feasible space (Zoom) . . . . . . . . . . . . 121
6.12 Two-degree-of-freedom guidance system: overview . . . . . . . . . . . . . . . 124
6.13 Two-degree-of-freedom guidance system: detailed . . . . . . . . . . . . . . . 126
6.14 Verification and validation steps . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.15 Monte Carlo: perturbed model parameters . . . . . . . . . . . . . . . . . . . 128
6.16 Monte Carlo: terminal dispersion . . . . . . . . . . . . . . . . . . . . . . . . 131
6.17 Monte Carlo: parachute opening ellipse 3D . . . . . . . . . . . . . . . . . . . 132
6.18 Monte Carlo: parachute opening ellipse . . . . . . . . . . . . . . . . . . . . . 132
6.19 Monte Carlo: state trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.20 Monte Carlo: path constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.21 RASTA processor-in-the-loop setup . . . . . . . . . . . . . . . . . . . . . . . 136



List of Tables

2.1 Capsule reference parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Mars reference parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Definition of the state variables . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Aerodynamic attitude angles . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 RTS iteration comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Sensitivity matrix sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Entry interface point (EIP) and parachute opening conditions (POC) . . . . 98
6.2 Path constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Perturbation impact estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4 Perturbed simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5 Monte Carlo: state error at parachute opening . . . . . . . . . . . . . . . . . 131
6.6 Runtime comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1 Coordinate frames used for the definition of the state vector . . . . . . . . . . 147
A.2 Coordinate frames used for the definition of the aerodynamic attitude . . . . 148

G.1 Objective function weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xv





CHAPTER 1
Introduction

1.1 Motivation

More than ever before modern science relies on machines to accomplish incredible feats that
humans could not achieve on their own. This is especially relevant for space exploration:
Autonomous machines enable the exploration of distant celestial objects that are inaccessible
to humans. Modern space missions rely on autonomous on-board computer programs to
fulfill increasingly complex and challenging mission requirements. A prime example is the
exploration of Mars: The Mars landers Viking (1976), Pathfinder (1996), MER (2003)
and Phoenix (2008) were uncontrolled and had estimated landing ellipses of hundreds of
kilometers diameter. The Mars Science Laboratory (2012) was the first mission to perform
a guided and controlled entry, bringing down the landing ellipse to about ten kilometers.
For a future human exploration of Mars a landing accuracy in the range of hundreds of
meters is required. Many research fields must collaborate and contribute towards achieving
this goal.
A particular important task falls to the on-board guidance and control system, which must
adapt the flight path to state perturbations and unpredictable environmental effects, like
e.g. atmospheric density changes, wind or dust. Often it is desired that the trajectory is
optimal with respect to a performance criterion, e.g. fuel consumption or heat load, while
at the same time the trajectory must satisfy possibly counteractive constraints. This can
be formally described by an optimal control problem.
The solution of optimal control problems is based on the mathematical modeling of dynamic
systems through differential equations. The solution of a general differential equation sys-
tem is commonly obtained numerically with the help of computer programs. This is subject
to the fields of transcription methods and nonlinear optimization. Solving a nonlinear op-
timization problem is a computationally demanding task, that is often not straightforward
and is therefore usually supervised by humans. Space missions to date rely on precomputed
reference trajectories and tracking controllers to compensate perturbations and to steer the
vehicle back to the nominal state.
One approach to improve the performance of such a control system is to recompute the
reference trajectory during flight, taking into account the perturbed system state. In space
missions this approach is especially challenging because the computational power of the on-
board computer system is very low compared to commercially available desktop computers

1
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and it might not be possible at all to solve the associated optimal control problem in the
available amount of time.
This motivates the search for fast, alternative methods for the optimal control of nonlinear
dynamic systems. One approach is to investigate the changes of the solution of an optimal
control problem with respect to small changes in model parameters. This is the subject of
parametric sensitivity analysis. So called parametric sensitivity differentials can be under-
stood as the susceptibility of the optimal solution to perturbations in the system parameters.
Under certain conditions the knowledge of the sensitivities enables a real-time adaption of
the reference trajectory and the control sequence through a Taylor series expansion. At the
same time questions are opened whether this approach can be used to synthesize an optimal
closed loop control law.

1.2 Thesis Goals
The goal of this thesis is the prototyping of a Mars entry guidance and control system that
uses an in-flight re-computation of the reference trajectory to achieve a precise landing. A
driving requirement is the computational feasibility of the guidance and control algorithm
on space qualified (or equivalent) computing hardware. The target system environment is
the ESA Reference Architecture System Test-Bed for Avionics (RASTA).
This thesis seeks to connect the practical engineering challenges of atmospheric entry guid-
ance to recent theoretical mathematical methods from nonlinear optimization and optimal
control. The atmospheric entry problem is formulated as parametric optimal control process,
which is led back to a parametric nonlinear program via direct transcription. To facilitate a
computationally feasible trajectory adaption, we focus on transferring and expanding recent
results in sensitivity theory, which enable a trajectory adaption without requiring expensive
derivative computations.
A main objective is to derive a closed loop feedback law for the entry dynamics to enable a
repeated, clock based, re-computation of the optimal control function and the optimal state
trajectory.
The feasibility and performance of the proposed guidance and control algorithm shall be
assessed in the frame of the Mars Precision Lander (MPL) study of the European Space
Agency. A numerical and stochastic analysis of the scenario shall be performed, and the
feasibility of the guidance and control algorithm shall be demonstrated on the RASTA.

1.3 Thesis Structure
In the remainder of Chapter 1 a short introduction into the basics of a guidance, navigation
and control (GNC) framework is given. The related terminology and the main tasks of the
GNC software modules are explained, addressing readers who are not familiar with avionics.
Furthermore a high level overview of the atmospheric entry sequence is given.
In chapter 2 the atmospheric entry dynamics and the Martian environment are modeled
mathematically. The state vector and the flight dynamic equations are introduced as well as
the aero- and thermodynamic constraints. The principle of bank angle control is illustrated,
focusing on small, low lift entry capsules.
Chapter 3 reviews some classical entry guidance and control concepts. We focus in particular
on the drag dynamics and discuss earlier related work. We incorporate the collected ideas
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in the synthesis of a drag control law based on the principle of feedback linearization, as
firstly suggested by Mease et al. At the end of the chapter we summarize the control related
challenges of atmospheric entry.
Chapter 4 shifts the focus to optimal control and nonlinear optimization. In preparation for
the following chapters the most important definitions and theoretical foundations of dynamic
and static optimization are stated. We discuss the direct transcription of infinite dimensional
optimal control processes into finite dimensional nonlinear programs and introduce the
notation to which we refer during the next chapters.
In Chapter 5 we explore parametric sensitivity analysis of nonlinear programs with the goal
to achieve real-time optimal control. We apply a real-time capable solution approximation
algorithm suggested by Büskens to an instructional example. We investigate the influence
of different discretization schemes on the solution approximation with the goal to generalize
the findings in order to identify the most advantageous formulation for the atmospheric
entry problem and we discuss the limitations of the chosen approach. The central result of
this chapter is the synthesis of a sub-optimal closed loop feedback law for nonlinear dynamic
systems.
In Chapter 6 we formulate the ESA Mars Precision Lander scenario as parametric optimal
control problem. The nominal solution and its parametric sensitivities are analyzed and we
apply the proposed feedback law to the entry problem. We compare the achieved region of
controllability with an approximation of the reachable set. This leads to the combination
of the feedback law with the drag tracking controller developed in Chapter 3 into a two
degree-of-freedom guidance system. The combined guidance system is numerically tested
and the performance is stochastically analyzed in a Monte Carlo campaign. Finally, it is
demonstrated that the novel guidance and control algorithm is real-time capable on the
RASTA through a LEON2 processor-in-the-loop test.
In Chapter 7 the performed work is summarized and conclusions are stated.

1.4 Guidance, Navigation and Control
Spacecraft on-board software can be complex1 and have many operational modes. The
part of the on-board software that is responsible for controlling a spacecraft is the guid-
ance, navigation and control system. According to the European Cooperation for Space
Standardization (ECSS) these terms can be defined as follows:
Guidance is the determination of the desired state and the establishment of the nominal

state trajectory.
Navigation is the determination of the state.
Control is the manipulation of forces to steer the current state towards the desired state.

For control design the flight dynamics are commonly separated in the translational motion
and the rotational motion. Translational and rotational motion often happen on different
time scales and the separation considerably simplifies the analysis. As a result the control
loop of flight systems is cascaded into a guidance loop and an attitude control loop. The data
flow of such a control system is sketched in Figure 1.1. The left part shows a modularized

1 The on-board software of the Mars Science Laboratory has about 1.3 million lines of code [Cox10].
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schematic of the on-board software, the right part is the dynamic system which is to be
controlled. The attitude control loop tracks the guidance command. The guidance function
is concerned with the translational motion, while the rotational dynamics are handled by
the attitude control system.
This thesis synthesizes, implements and validates a guidance algorithm for Mars atmospheric
entry, i.e. a solution of the translational equations of motion is determined. The context
within the overall entry, descent and landing sequence, is described in the next section.

Attitude Control
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Disturbances

Disturbances
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Figure 1.1: Guidance, navigation and control loop

1.5 Mars Entry, Descent and Landing

Unpowered atmospheric entry relies on the reduction of the spacecraft’s speed through
the drag generated inside the atmosphere. The gravity on Mars is approximately 62% of
Earth gravity, but the Mars atmosphere only has a density of about 1% of the Earth’s
atmosphere.
The high initial entry speed causes the gases in front of the vehicle to be compressed into a
shock wave. The compression is so rapid that it causes an immense amount of radiant heat.
Normal materials melt under such conditions, therefore atmospheric entry systems require
a dedicated heat shield and thermal protection system.
The thin atmosphere of Mars is barely enough to reduce the vehicle’s speed sufficiently.
Mars entry vehicles tend to decelerate at low altitude and may never reach the subsonic
terminal velocity of Earth aerodynamic vehicles. A critical factor is the atmospheric density,
which varies with solar irradiation and the seasons across a Martian year, because it depends
on the temperature. Another influential factor is the amount of dust in the atmosphere,
which depends upon local weather conditions. The uncertainty in the Martian atmosphere is
challenging, because it requires a control design that does not depend on the correctness of a
nominal atmosphere profile. In addition the entry trajectory must respect the aerodynamic
and thermodynamic limits of the vehicle.
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1.5.1 Atmospheric Entry of the Mars Science Laboratory
This section illustrates the entry, descent and landing (EDL) sequence of the Mars Science
Laboratory as described in [Pra08]. The sequence starts with the separation of the aeroshell
from the cruise stage. Control weights are jettisoned to create an offset of the center of mass
(CoM) from the longitudinal symmetry axis. The offset of the CoM allows to control the
direction of the lift vector by rotation around the velocity axis. This is explained in detail
in Section 2.3.
The atmospheric entry starts at the border of the sensible atmosphere. The guided entry
and maneuvering phase lasts until the opening of the parachute. The entry guidance is
activated as soon as the sensed drag acceleration is above a certain threshold. During
the entry phase the guidance system relies solely on inertial navigation. The navigation
system computes a real-time state estimate based on an inertial measurement unit. It is
particularly important that the state at the beginning of the entry is known accurately, as
the dynamic system is not observable during that phase. The aeroshell first encounters peak
heating followed by peak deceleration and up to 99% percent of the vehicles kinetic energy
are dissipated through heat into the atmosphere. The guided entry phase lasts for about 4
minutes, during which the majority of downrange is covered.
Shortly before the parachute deployment the CoM offset is eliminated through the jetti-
soning of additional control weights. The supersonic parachute will reduce the speed from
about 450 m/s to 100 m/s. Meanwhile the heat shield is jettisoned and the vehicle begins
collecting radar and imagery data of the landing zone.
The powered descent stage begins with the separation of the back shell and a short free
fall of the powered descent vehicle. At about 20 meters above ground at a vertical velocity
of 0.75 m/s the skycrane maneuver is initiated and eventually the rover is lowered to the
surface. After the touchdown of the rover, the powered descent vehicle flies to a safe distance
and the EDL sequence is completed.

1.5.2 EDL Requirements for Future Mars Missions
The primary goals for EDL systems of future Mars missions are to

1. increase the landed mass and to
2. improve the landing accuracy.

For robotic exploration an increase in landed mass will result into a reduction of the cost
per kilogram of payload mass. Landed mass can also be traded to access a landing zone at a
higher elevation level. The increased accuracy is a requirement to access specific scientifically
interesting areas, e.g. valleys, rims or rough terrain. Furthermore these goals are stepping
stones to enable a human exploration of Mars in the future. Braun and Manning [Bra06]
anticipate that the “[. . . ] human exploration of Mars call[s] for the landing of 40-80 metric
tons surface elements at scientifically interesting locations within close proximity (10’s of
meters) of pre-positioned robotic assets. These plans require a simultaneous two order of
magnitude increase in landed mass capability, four order of magnitude increase in landed
accuracy, and an entry, descent and landing operations sequence that may need to be
completed in a lower density (higher surface elevation) environment. This is a tall order
that will require the space qualification of new EDL approaches and technologies.”
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Figure 1.2: MSL entry, descent and landing sequence.
Image credit: NASA, MSL press release 2012 (modified)



CHAPTER 2
A Mathematical Model for Planetary Atmospheric Flight

The mathematical solution of control problems requires a mathematical model of the en-
vironment and the dynamics. A model should describe the real world as accurately as
necessary while being as simplistic as possible. This chapter introduces the models and
dynamics which are used in the derivation of the guidance and control laws. At some points
we mention improvements or additions to the models that are required to create a more
accurate simulation environment for the purpose of testing the control algorithms.

2.1 Aerodynamic Force
The most influential factors in planetary atmospheric flight are the atmosphere itself and
the gravity of the planet. To describe the influence of the atmosphere we must understand
the aerodynamic force that acts on an object exposed to an airflow. To this end we consider
the dynamic pressure 𝑞, which measures the kinetic energy per unit volume of particles.
According to [Vin80] the dynamic pressure depends on the atmospheric density 𝜌 and the
relative speed 𝑣atm between atmosphere and object.

𝑞 = 1
2𝜌𝑣

2
atm (2.1)

Dynamic pressure is measured in newton per square meter or pascal, i.e. N
m2 = Pa. The

magnitude of the aerodynamic force on an object moving through the atmosphere is pro-
portional to the dynamic pressure. The force component in direction of the flow is called
drag 𝐹𝐷 and the force component perpendicular to the flow is called lift 𝐹𝐿. The deflection
properties of surfaces with complex shape are described using drag and lift coefficients 𝐶𝐷

and 𝐶𝐿. The drag and lift forces are

𝐹𝐷 = 𝑞𝑆𝐶𝐷 = 1
2𝜌𝑣

2
atm𝑆𝐶𝐷, (2.2a)

𝐹𝐿 = 𝑞𝑆𝐶𝐿 = 1
2𝜌𝑣

2
atm𝑆𝐶𝐿, (2.2b)

where 𝑆 is the reference size of the surface exposed to the flow.
If the atmosphere is at rest and if there is no wind, then the velocity with respect to the
atmosphere 𝑣atm is equal to the velocity 𝑣gnd with which the vehicle moves with respect to
the ground. The vector relationship between atmosphere-velocity and ground-velocity is

7
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given by

𝑣atm = 𝑣gnd − 𝑣wnd, (2.3)

where 𝑣wnd is the velocity vector of the atmosphere with respect to the ground, i.e. the wind.
In the model for guidance and control we assume 𝑣wnd = 0 such that

𝑣atm = 𝑣gnd = 𝑣. (2.4)

2.2 Atmosphere Model

The aerodynamic forces depend on the atmospheric density 𝜌. The density is a function of
the atmospheric pressure, the temperature and the composition of the atmosphere. From
these properties the density can be obtained using the ideal gas law, but commonly this
complicated relation is simplified by mapping density against altitude ℎ. The most common
and simple approximation is the exponential atmosphere

𝜌exp(ℎ) = 𝜌0𝑒
− ℎ

ℎ𝑠 , (2.5)

where 𝜌0 is the density at a reference level (e.g. sea level) and ℎ𝑠 is the so called scale height,
the vertical distance at which the density decreases by a factor of 1

𝑒
. But the exponential

model is not very accurate.
A more accurate approach is to numerically interpolate the density between sufficiently
many discrete altitude values. The density-altitude relation is obtained from the European
Mars Climate Database [Lew99]. The density is interpolated using cubic splines.
Another important atmospheric property is the local speed of sound 𝑐, which mainly de-
pends on pressure, density and thus temperature. This relationship is likewise simplified
by using an altitude profile. The function 𝑐(ℎ) is obtained analogously by cubic spline
interpolation.
The local speed of sound allows the computation of the Mach number 𝑀 as a function of
velocity and altitude.

𝑀 = 𝑣

𝑐(ℎ) (2.6)

With the Mach number speeds can be compared, taking into account differences in pressure,
density and temperature, via the normalization through the speed of sound. The Mach
number is used to determine the aerodynamic coefficients of the entry vehicle, as explained
in the next section.

2.3 Entry Vehicle Model

The entry vehicle is a small capsule with a diameter of 2.8 meters and a total wet mass of
1050 kilograms. The capsule is trimmed at a fixed angle of attack 𝛼. At the trim angle
the heat shield nose is tilted below the velocity vector to generate an upwards directed lift
force, as shown in Figure 2.1. The vertical component of the lift vector can be controlled
by rotating, or banking, the capsule around the velocity axis. This is facilitated by multiple
small thrusters mounted on the aft section. The control of the vertical lift vector affects the
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sink velocity and thus how fast the vehicle descents into the denser regions of the atmosphere,
which in turn controls the drag. Drag controls the longitudinal range, or downrange, of the
flight. This is explained in detail in Chapter 3.1.
Decoupling the translational and rotational motion of the vehicle allows for some simplifi-
cations concerning the attitude of the entry vehicle for the purpose of guidance design, as
for example detailed in [Hir09]. The important simplifying assumptions are:

1. There is no side slip, thus the velocity vector always lies in the vehicle’s vertical plane
of symmetry.

2. The vehicle is statically and dynamically stable. The pitching motion is neglected and
the angle of attack is treated as constant.

The aerodynamic coefficients 𝐶𝐷 and 𝐶𝐿 are functions of the Mach number and the angle
of attack. Because the angle of attack is assumed to be constant, this leaves 𝐶𝐷 and 𝐶𝐿

as a function of the Mach number only. The aerodynamic coefficients used in this thesis
are provided by ESA from the aerodynamic coefficient database of the Mars Precision
Lander study. Analogously to the density profile the coefficients are obtained at discrete
Mach numbers and cubic spline interpolation is used to obtain the functions 𝐶𝐷(𝑀) and
𝐶𝐿(𝑀).
The average lift over drag ratio of the entry capsule at hyper- and supersonic speeds at
the trim angle of attack is about 0.2. This lift ratio is very small in comparison to other
lifting bodies. As a result the control reserve before going into saturation, i.e. full lift-up
or lift-down, is small, which is a great challenge for the guidance and control design. The
capsule reference parameters are summarized in Table 2.1.

𝑣𝑎𝑖𝑟
𝜎

𝐿

𝐷

𝑔𝑀

𝛼
CoM

Figure 2.1: Lateral view of the entry capsule and the aerodynamic lift and drag forces.
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Table 2.1: Capsule reference parameters

Symbol Property Value
𝑚 Mass 1050 kg
𝑑 Diameter 2.8 m
𝑟𝑛 Effective nose radius 0.7 m
𝑆 Aerodynamic reference area 6.1575 m2

2.4 Gravity Model
The planet Mars is modeled as a sphere with radius 𝑟𝑀 . We assume a uniform mass
distribution, which allows to model the gravity as a central field around a point having the
mass of the planet. The gravitational acceleration towards the planetary center is according
to Newton’s law

𝑔(𝑟) = 𝜇𝑀

𝑟2
, (2.7)

where 𝜇𝑀 is the gravitational constant multiplied by the mass of Mars. The radial distance
𝑟 of the spacecraft from the planetary center is the sum of the planetary radius 𝑟𝑀 and the
altitude ℎ.

𝑟 = 𝑟𝑀 + ℎ (2.8)

The relevant reference values are summarized in Table 2.2. They result into a gravitational
acceleration of 3.72 m

s2 at the surface, which is about 38 % of the gravity acceleration on
Earth.
A more accurate approximation of the gravitational acceleration can be obtained by mod-
eling the nonuniform mass distribution. This requires to take into account the so called
zonal harmonic coefficients. These correction terms depend on the geodetic latitude. The
influence of these coefficients is very small compared to the aerodynamic forces and the
uncertainty in the aerodynamic model. Hence this more accurate model is only used for
simulation and not for the derivation of the control laws, because the minor accuracy gain
does not justify the increase in complexity.

Table 2.2: Mars reference parameters

Symbol Property Value
𝑟𝑀 Mars radius 3 393 940 m
𝜇𝑀 Mars gravity constant 4.282 828 29 · 1013 m3

s2

𝛺𝑀 Mars rotation rate 7.088 218 · 10−5 rad
s

2.5 Translational Equations of Motion
In this section the motion of a spacecraft over a rotating, spherical planet is described. We
assume the atmosphere rotates uniformly with the planet, hence there is no wind. The
state of the spacecraft is defined with respect to a set of reference coordinate frames. Their
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definitions are given in Appendix A.
The planet centered inertial frame (PCI) is considered inertial for the purpose of vector
derivatives. The position of the spacecraft is expressed with respect to the planet centered,
planet fixed (PCPF) coordinate system, which rotates about the 𝑧𝑃 𝐶𝐼 axis with the angular
velocity 𝛺𝑀 . The position is defined using the spherical coordinates 𝑟, 𝜆, 𝜙 as described in
Table 2.3.
The trajectory axis (TA) frame is used to express the flight-path velocity vector (relative to
the ground) with respect to the north-east-down (NED) frame. The trajectory axis frame
relates the local vertical plane (spanned by 𝑧𝑁𝐸𝐷 and the velocity vector 𝑣) to the NED
frame by the flight-path inclination angle 𝛾 and the heading angle 𝜒. For the definition of
the spacecraft state we prefer to use the altitude ℎ instead of the radial distance 𝑟, their
simple relation is given by (2.8). The state vector for translational motion at time 𝑡 is
thus

𝑥(𝑡) = (ℎ, 𝜆, 𝜙, 𝑣, 𝛾, 𝜒). (2.9)

Table 2.3: Definition of the state variables

Symbol Property Description Unit Domain
ℎ Altitude over the spherical planet approximation. m R
𝜆 Longitude is measured positive from the zero meridian

towards east.
rad [−𝜋, 𝜋]

𝜙 Geocentric
latitude

is measured positive from the equatorial
plane towards north.

rad [−𝜋
2 , 𝜋

2 ]

𝑣 Velocity with respect to the ground. m
s R+

0
𝛾 Flight

path angle
is measured from the local horizontal plane
towards the velocity vector; positive above
the horizontal plane.

rad [−𝜋
2 , 𝜋

2 ]

𝜒 Heading
angle
(azimuth)

is measured from 𝑋𝑛𝑒𝑑 towards the projec-
tion of the velocity vector on the horizontal
plane; positive towards the east.

rad [−𝜋, 𝜋]

2.5.1 Time Domain

The spatial relation of the states is shown in Figure 2.2. According to trigonometric rela-
tionships the velocity vector 𝑣⃗ can be expressed in the NED system as

𝑣⃗𝑁𝐸𝐷 =

⎛⎝𝑣 cos 𝛾 cos𝜒
𝑣 cos 𝛾 sin𝜒
𝑣 sin 𝛾

⎞⎠ (2.10)

and the position vector is

𝑟⃗𝑁𝐸𝐷 =

⎛⎝ 0
0
−𝑟

⎞⎠ . (2.11)
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zero meridian

equator

𝜆

𝜙
𝑟𝑀

𝑣⃗𝑔𝑟𝑜𝑢𝑛𝑑

𝛾

𝜒

𝑋𝑁𝐸𝐷 (north)

𝑌𝑁𝐸𝐷

𝑍𝑃 𝐶𝑃 𝐹

𝑋𝑃 𝐶𝐼

𝑌𝑃 𝐶𝑃 𝐹

𝛺

local
horizontal
plane

S/C CoM

ℎ

𝑌𝑃 𝐶𝐼

𝑋𝑃 𝐶𝑃 𝐹

𝑍𝑃 𝐶𝐼

𝜆𝐼

Figure 2.2: Spatial relation of the state variables

The time derivative of the position vector in the NED system can be obtained by taking
into account the rotation of the NED system with respect to the PCI system. According to
[Wei10, p. 98] the angular velocity of the NED system relative to the PCI system is

𝛺𝑃 𝐶𝐼
𝑁𝐸𝐷 =

⎛⎝ 𝜆̇ cos𝜙
−𝜙̇

−𝜆̇ sin𝜙

⎞⎠ . (2.12)

and the time derivative of the position vector in a rotating system is(︂
𝑑

d𝑡

)︂
𝑃 𝐶𝐼

𝑟⃗𝑃 𝐶𝐼 =
(︂
𝑑

d𝑡

)︂
𝑁𝐸𝐷

𝑟⃗𝑁𝐸𝐷 +𝛺𝑃 𝐶𝐼
𝑁𝐸𝐷 × 𝑟⃗𝑁𝐸𝐷. (2.13)

This gives

(︂
𝑑

d𝑡

)︂
𝑃 𝐶𝐼

𝑟⃗𝑃 𝐶𝐼 =

⎛⎝0
0
𝑟̇

⎞⎠
𝑁𝐸𝐷

+

⎛⎝ 𝜆̇ cos𝜙
−𝜙̇

−𝜆̇ sin𝜙

⎞⎠
𝑁𝐸𝐷

×

⎛⎝ 0
0
−𝑟

⎞⎠
𝑁𝐸𝐷

=

⎛⎝ 𝜙̇ 𝑟

𝜆̇ 𝑟 cos𝜙
𝑟̇

⎞⎠
𝑁𝐸𝐷

.(2.14)

Equating (2.14) with (2.10) leads to

ℎ̇ = 𝑣 sin 𝛾 (2.15a)

𝜆̇ = 𝑣
cos 𝛾 sin𝜒
𝑟 cos𝜙 (2.15b)

𝜙̇ = 𝑣
cos 𝛾 cos𝜒

𝑟
. (2.15c)

This are the time domain kinematic equations.
The dynamic relationships between 𝑣, 𝛾 and 𝜒 are obtained based on the force equation,
Newton’s second law of motion. Newton’s law is only valid in an inertial frame, thus the
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forces are calculated in the PCI system.

𝑚𝑎⃗𝑃 𝐶𝐼 = 𝑚
d2𝑟⃗𝑃 𝐶𝐼

d𝑡2
= 𝐷⃗𝑃 𝐶𝐼 + 𝐿⃗𝑃 𝐶𝐼 +𝑚𝑔⃗𝑃 𝐶𝐼 (2.16)

Here the previously introduced models take effect. The dynamic equations are obtained
by transforming (2.16) to the NED system and solving for d𝑣

d𝑡
, d𝛾

d𝑡
and d𝜒

d𝑡
. For a detailed

derivation we refer to [Wei10, Chap. 6]. The time domain dynamic equations are

𝑣̇ = −𝐷 − 𝑔 sin 𝛾 (2.17a)
+𝛺2

𝑀𝑟 cos𝜙 (sin 𝛾 cos𝜙− sin𝜙 cos 𝛾 cos𝜒) ,

𝛾̇ = 𝐿

𝑣
cos 𝜎 +

(︁𝑣
𝑟
− 𝑔

𝑣

)︁
cos 𝛾 (2.17b)

+ 2𝛺𝑀2 cos𝜙 sin𝜒+𝛺2
𝑀

𝑟

𝑣
cos𝜙 (cos 𝛾 cos𝜙− sin 𝛾 sin𝜙 cos𝜒) ,

𝜒̇ = 𝐿 sin 𝜎
𝑣 cos 𝛾 + 𝑣

𝑟
cos 𝛾 sin𝜒 tan𝜙 (2.17c)

− 2𝛺𝑀 (tan 𝛾 cos𝜙 cos𝜒− sin𝜙) +𝛺2
𝑀

𝑟

𝑣 cos 𝛾 sin𝜙 cos𝜙 sin𝜒,

where 𝐿 = 𝐹𝐿

𝑚
and 𝐷 = 𝐹𝐷

𝑚
are the lift and drag acceleration. The terms containing the

factor 𝛺𝑀 are due to the rotation of the planet. Thus by setting 𝛺𝑀 := 0 the dynamic
equations for a spherical non-rotating planet are obtained.

2.5.2 Energy Domain

It can be advantageous for control design, in particular in the context of trajectory tracking,
to eliminate time from the equations of motion by replacing it with a different independent
variable. If no temporal context must be satisfied, time tracking imposes an unnecessary
constraint. A less restrictive tracking strategy can be obtained using an energy measure
which is directly based on the state variables.

Definition 2.18 (Specific Total Mechanical Energy)

The total mechanical energy is the sum of kinetic and potential energy.

𝐸tot = 𝐸kin + 𝐸pot = 1
2𝑚𝑣

2 +
ˆ

𝑚

𝑟2
𝐺𝑀 d𝑡 = 1

2𝑚𝑣
2 − 𝑚

𝑟
𝐺𝑀 + 𝑐 (2.19)

𝐺 is the gravitational constant and 𝑀 is the planet mass. Energy per unit mass is called
specific energy. If the potential energy is normalized to zero at the planets surface, the
specific total mechanical energy is

𝐸 = 𝑣2

2 −
(︂
𝐺𝑀

𝑟𝑝 + ℎ
− 𝐺𝑀

𝑟𝑝

)︂
, (2.20)

where 𝑟𝑝 is the planet radius. We refer to 𝐸 abbreviating as ’energy’.

The time derivative of energy is found by differentiating 𝑣 and ℎ and using the Newtonian
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gravity law 𝑔 = 𝐺𝑀/(𝑟𝑝 + ℎ)2.

𝐸̇ = 𝑣𝑣̇ −
(︂
−𝐺𝑀

(𝑟𝑝 + ℎ)2
ℎ̇

)︂
(2.21)

= 𝑣𝑣̇ + 𝑔ℎ̇

= −𝑣𝐷 +𝛺2
𝑀𝑟 cos𝜙 (sin 𝛾 cos𝜙− sin𝜙 cos 𝛾 cos𝜒)

= −𝑣𝐷 + 𝛷

For a non rotating planet we have 𝛺𝑀 = 𝛷 = 0. The derivative then simplifies to 𝐸̇ =
−𝑣𝐷. In this case 𝐸(𝑡) is strongly monotonically decreasing, because during entry flight
𝑣(𝑡) > 0 and 𝐷(𝑡) > 0. This makes energy a suitable candidate for replacing time as
the independent variable. Note that for a rotating planet model 𝐸(𝑡) is not necessarily
monotonically decreasing.
For the substitution of time with energy the equations of motion are transformed according
the the chain rule

𝑑(·)
d𝐸 = 𝑑(·)

d𝑡
d𝑡
d𝐸 . (2.22)

The kinematic and dynamic equations with respect to energy are

ℎ′ = − 1
𝐷

sin 𝛾 (2.23a)

𝜆′ = − 1
𝐷

cos 𝛾 sin𝜒
𝑟 cos𝜙 (2.24a)

𝜙′ = − 1
𝐷

cos 𝛾 cos𝜒
𝑟

(2.25a)

𝑣′ = 𝐷 + 𝑔 sin 𝛾
𝐷𝑣

(2.25b)

𝛾′ = − 𝐿

𝐷

cos 𝜎
𝑣2
−

(︁𝑣
𝑟
− 𝑔

𝑣

)︁ cos 𝛾
𝐷𝑣

(2.25c)

𝜒′ = − 𝐿

𝐷

sin 𝜎
𝑣2 cos 𝛾 −

1
𝐷𝑟

cos 𝛾 sin𝜒 tan𝜙. (2.25d)

A major difficulty in control design for entry dynamics is that the time domain equations
of motion are strongly nonlinear around the peak deceleration, i.e. when the energy deriva-
tive 𝐸̇ is steep. The substitution of time with energy is a nonlinear state transformation
that corresponds to a stretching of the dynamics when the energy rate is high, and to a
compression when the energy rate is low. This works against the strongest nonlinearity in
the system, which can be exploited for analysis and control design, as we will see later.

2.6 Path Constraints

The ability of the entry vehicle to withstand heat is determined by the thermal protection
system. The system’s heat tolerance is defined in terms of the heat flux 𝑄̇. An approxima-
tion of the heat flux is given by the Sutton-Graves-Equation, based on the effective nose
radius 𝑟𝑛 of the heat shield and a parameter 𝑘𝑝 depending on the composition of the atmo-
sphere. For the Martian atmosphere we have 𝑘𝑝 = 1.9027 · 10−4

√
kg/m, comparatively for
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the Earth it would be 𝑘𝑝 = 1.75 · 10−4
√

kg/m.

𝑄̇ = 𝑘𝑝

√︀
𝜌(ℎ)
𝑟𝑛

𝑣3 (2.26)

The tolerance of the vehicle to structural load is defined in terms of dynamic pressure

𝑑 = 1
2𝜌(ℎ)𝑣2 (2.27)

and the load factor

𝑛 =
√
𝐷2 + 𝐿2

𝑔𝐸

. (2.28)

The limits for these values depend on numerous factors, but a lighter structure and heat
shield will generally result into reduced tolerance. It is an obvious design goal for the entry
trajectory to keep the heat flux, the dynamic pressure and the load factor low to allow for
a lighter structure/heat shield to maximize the potential payload.
Let 𝑄̇max, 𝑑max and 𝑛max be the system’s limit values. Note that all constraints are functions
of only altitude and velocity (at a constant angle of attack). We are interested in determining
the altitude and velocity profiles in which the constraints are at the limits. This is especially
easy in the energy domain because the energy 𝐸 constitutes a relationship between altitude
and velocity. As an example consider the constraint 𝑄̇max. The pointwise (numerical)
solution of the nonlinear equation system

𝐸 = 𝑣2

2 −
(︂
𝐺𝑀

𝑟𝑝 + ℎ
− 𝐺𝑀

𝑟𝑝

)︂
, 𝐸 > 0, ℎ > 0, 𝑣 > 0, (2.29a)

𝑄̇max = 𝑘𝑝

√︀
𝜌(ℎ)
𝑟𝑛

𝑣3. (2.29b)

for energy levels 𝐸 ∈ [𝐸0;𝐸𝑓 ] determines the critical altitude profile ℎ𝑄̇max(𝐸) and the
critical velocity profile 𝑣𝑄̇max(𝐸). The critical values for the other constraints can be obtained
analog. The combination of all critical profiles determines the feasible space (also called
entry corridor) for the trajectory. Note that from the critical altitude and velocity profiles
the critical drag profile can be obtained. This allows to represent all path constraints in the
drag-energy domain. This is a major advantage for trajectory planning, because shaping
a trajectory to respect the drag constraint is easier than to take into account multiple
constraints on multiple states.

2.7 Aerodynamic Attitude and Wind

The aerodynamic forces depend on the relative air-flow, i.e. they must be calculated with
respect to the atmosphere relative speed 𝑣atm. But the equations of motion instead refer
to the ground speed 𝑣gnd. If the atmosphere above the ground is not at rest (𝑣gnd ̸= 𝑣atm),
additional transformations and coordinate frames are required, as defined in Appendix A.
The corresponding aerodynamic attitude angles are defined in Table 2.4 and their spatial
relationships are shown in Figure 2.3.
For the derivation of the guidance laws this problem is simplified by assuming 𝑣 = 𝑣gnd = 𝑣atm.
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For the correct derivation of the influence of wind in a simulation environment, it is neces-
sary to calculate the atmosphere relative velocity and the resulting aerodynamic forces, and
then transform them back to ground speed related forces, for details we refer to [Moo94,
Chap. 6.2].

Table 2.4: Aerodynamic attitude angles

Symbol Property Description Unit Domain
𝛼 Angle of

attack
is measured in the vehicle’s vertical plane
of symmetry from the the 𝑋𝐵-axis towards
the projection of the air-path velocity vec-
tor 𝑣atm.

rad [−𝜋, 𝜋]

𝛽 Side slip
angle

is measured from the vehicle’s vertical
plane of symmetry towards the air-path
axis 𝑋𝐴.

rad [−𝜋, 𝜋],
𝛽 := 0

𝜎 Bank an-
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hicle’s vertical plane of symmetry, when
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Figure 2.3: Air path angles assuming 𝛽 = 0.



CHAPTER 3
Entry Guidance and Control Concepts

In this chapter some classical entry guidance and control concepts are studied. Tracking
methods drive the error between a reference state and the actual state to zero, usually based
on a closed form feedback control law. Prediction based methods use analytic or numeric
strategies to predict the future trajectory online and then use a gradient based approach to
find control commands that eliminate the error between the predicted trajectory and the
desired target. The control laws of prediction based methods can often not be expressed
in closed form, but rather as an algorithm. This relatively new field is also referred to
as computational guidance. The combination of prediction based trajectory adaption and
tracking leads to a cascaded two degree-of-freedom control design.

Atmospheric Entry 
Guidance

Trajectory 
Tracking

Multi-Variable 
Tracking

Drag Tracking
Optimal 
Control

......

Trajectory 
Prediction

Numeric Predictor 
Corrector

Two Degree-of-
Freedom Control

Figure 3.1: Selected approaches to entry guidance & control

Out of the methods shown in Figure 3.1 drag tracking has had the most operational use.
Different variants of this technique have been used for Apollo, the Space Shuttle, and the
Mars Science Laboratory. The main part of this chapter will therefore focus on drag tracking.
To understand the intimacies of this method, we synthesize a drag feedback law in the next
section, based on the work of Mease, Kremer, Bharadwaj, Tu and Saraf. In the second
section we briefly introduce some alternative approaches. In the last section of the chapter
we summarize major theoretical challenges of atmospheric entry guidance algorithms.

17
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3.1 Drag Tracking
The aerodynamic forces can be manipulated to control the entry dynamics. The entry
capsule’s control system does not allow to influence drag directly (there are no flaps), but
it allows to control the lift vector, respectively its vertical component, through bank angle
modulation. Controlling lift allows a (delayed) control of drag, which in turn allows to
control the range. This dependency chain is shown in Figure 3.2.

Lift ∫ 
Vertical 
Velocity

Altitude 
(Density)

Drag
Horizontal 

Velocity
Range∫ ∫ ∫ 

Control

Figure 3.2: Relationship between the aerodynamic forces and range

The modulation of the bank angle however also alters the horizontal lift vector component
and thus influences the lateral motion and the trajectory curvature. Drag tracking strategies
solve the trajectory length problem and the trajectory curvature problem separately. In the
following we are first concerned with the longitudinal motion of the vehicle, i.e. the range
problem. The range 𝑅 is given by

𝑅 =
ˆ 𝑡𝑓

𝑡𝑠

𝑣 cos 𝛾 d𝑡. (3.1)

With 𝛺𝑀 = 0 it follows from (2.17a) that

d𝑡 = d𝑣
−𝐷 − 𝑔 sin 𝛾 (3.2)

and it follows from (2.21) that

d𝑡 = d𝐸
−𝑣𝐷

. (3.3)

By substituting (3.2) into (3.1) the range can be written as integral over velocity. With the
approximations cos 𝛾 ≈ 1 and sin 𝛾 ≈ 0 it follows that

𝑅 =
ˆ 𝑡𝑓

𝑡𝑠

𝑣 cos 𝛾 d𝑡 =
ˆ 𝑣(𝑡𝑓 )

𝑣(𝑡𝑠)

𝑣 cos 𝛾
−𝐷 − 𝑔 sin 𝛾 d𝑣 ≈

ˆ 𝑣(𝑡𝑓 )

𝑣(𝑡𝑠)

𝑣

−𝐷
d𝑣. (3.4)

Likewise the range can be written as integral over energy

𝑅 =
ˆ 𝑡𝑓

𝑡𝑠

𝑣 cos 𝛾 d𝑡 =
ˆ 𝐸(𝑡𝑓 )

𝐸(𝑡𝑠)

𝑣 cos 𝛾
−𝑣𝐷

d𝐸 ≈
ˆ 𝐸(𝑡𝑓 )

𝐸(𝑡𝑠)

1
−𝐷

d𝐸. (3.5)

The desired range 𝑅𝑟 can thus be specified using a reference drag acceleration vs. energy
profile such that

ˆ 𝐸(𝑡𝑓 )

𝐸(𝑡𝑠)

1
−𝐷𝑟

d𝐸 = 𝑅𝑟. (3.6)
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Perfect tracking of 𝐷𝑟 consequentially achieves the desired range.
The above mentioned authors (amongst others) propose tracking of 𝐷𝑟 using feedback lin-
earization. We follow this approach and synthesize a downrange drag tracking law in the
next sections.

3.1.1 Feedback Linearization
This section is an introduction to feedback linearization, oriented at [Isi95]. The core idea is
to find a transformation of a nonlinear control affine system into an equivalent linear system
through a change of variables and a suitable control input. Although feedback linearization
can be applied to a wider category of systems, for the application of drag tracking it is
sufficient to consider a single-input single-output system.

Definition 3.7 (Single-Input Single-Output System (affine, time invariant))
Let 𝑥(𝑡) ∈ R𝑛𝑥 be the state at time 𝑡 and 𝑢(𝑡) ∈ R the control at time 𝑡. Let 𝐴 : R𝑛𝑥 → R𝑛𝑥

and 𝐵 : R𝑛𝑥 → R𝑛𝑥 be smooth vector fields and 𝐶 : R𝑛𝑥 → R a smooth function. The control
influences the state according to a control affine system of first order ordinary differential
equations (ODEs).

𝑥̇(𝑡) = 𝐴(𝑥(𝑡)) + 𝐵(𝑥(𝑡)) 𝑢(𝑡)
𝑦(𝑡) = 𝐶(𝑥(𝑡))

𝑥̇ is called system dynamic and 𝐶 is called output function.

The objective is to find the relationship between the control input 𝑢(𝑡) and the output 𝑦(𝑡)
along a trajectory 𝑥(𝑡) resulting from the vector field 𝑉 (𝑥) = 𝐴(𝑥) + 𝐵(𝑥)𝑢. To this end
the output function is derived with respect to time until the control explicitly enters the
derivative. The first time derivative of the output function is

𝑦̇ = d𝐶(𝑥)
d𝑡 (3.8a)

= ∂𝐶(𝑥)
∂𝑥1

𝑥̇1 + . . .+ ∂𝐶(𝑥)
∂𝑥𝑛

𝑥̇𝑛𝑥
(3.8b)

= ⟨∇𝐶(𝑥), 𝑥̇⟩ (3.8c)
= ⟨∇𝐶(𝑥), 𝐴(𝑥)⟩+ ⟨∇𝐶(𝑥), 𝐵(𝑥)⟩𝑢 (3.8d)

Equation (3.8) describes the application of the vector field 𝑉 on the output function 𝐶,
which can be interpreted as the directional derivative of 𝐶 along 𝑉 , or equivalently the
rate of change of 𝐶 measured by an observer who is moved along 𝑉 . This relationship is
expressed by the Lie derivative.

Definition 3.9 (Lie Derivative)
The Lie derivative of a scalar function 𝐶 : R𝑛𝑥 → R along a vector field 𝑉 : R𝑛𝑥 → R𝑛𝑥 at
a point 𝑥 is defined as

𝐿𝑉𝐶(𝑥) := ⟨∇𝐶(𝑥), 𝑉 (𝑥)⟩

where ⟨·⟩ is the scalar product. If 𝐶 is differentiated 𝑘 times along 𝑉 the notation 𝐿[𝑘]
𝑉 𝐶(𝑥)

is used.
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Using the Lie derivative, the time derivative of the output function can be written as

𝑦̇ = 𝐿𝐴𝐶(𝑥) + 𝐿𝐵𝐶(𝑥)𝑢. (3.10)

For technical systems it usually holds that

𝐿𝐵𝐶(𝑥) = 0 =⇒ 𝑦̇ = 𝐿𝐴𝐶(𝑥). (3.11)

Finding the effect of the control 𝑢 then requires higher order time derivatives of the output.
For the case 𝐿𝐵𝐶(𝑥) = 0 the second time derivative is

𝑦 = d𝐿𝐴𝐶(𝑥)
d𝑡 (3.12a)

= ∂𝐿𝐴𝐶(𝑥)
∂𝑥

𝑥̇ (3.12b)
= 𝐿𝐴𝐿𝐴𝐶(𝑥) + 𝐿𝐵𝐿𝐴𝐶(𝑥)𝑢 (3.12c)

Should it hold repeatedly that 𝐿𝐵𝐶(𝑥) = 0 this leads to the generalized scheme

𝑦 = 𝐶(𝑥) (3.13a)
𝑦̇ = 𝐿𝐴𝐶(𝑥) (3.13b)
𝑦 = 𝐿[2]

𝐴 𝐶(𝑥) (3.13c)
... (3.13d)

𝑦(𝑟−1) = 𝐿[𝑟−1]
𝐴 𝐶(𝑥) (3.13e)

𝑦(𝑟) = 𝐿[𝑟]
𝐴 𝐶(𝑥) + 𝐿𝐵𝐿

[𝑟−1]
𝐴 𝐶(𝑥)𝑢 (3.13f)

where 𝐿𝐵𝐿
[𝑖]
𝐴𝐶(𝑥) = 0, for 𝑖 = 0,...,𝑟 − 2. The quantity 𝑟 is called relative degree.

Definition 3.14 (Relative Degree)
System (3.7) is said to have relative degree 𝑟 at a point 𝑥1 if

1. 𝐿𝐵𝐿
[𝑘]
𝐴 𝐶(𝑥) = 0 for all 𝑥 in a neighborhood of 𝑥1, for 𝑘 = 0,...,𝑟 − 2

2. 𝐿𝐵𝐿
[𝑟−1]
𝐴 𝐶(𝑥) ̸= 0

We focus on the case where the relative degree is equal to the system order. The system
can then be transformed to a new set of coordinates 𝑧(1),...,𝑧(𝑟).⎛⎜⎜⎜⎝

𝑧(1)

𝑧(2)

...
𝑧(𝑟)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑦
𝑦̇
...

𝑦[𝑟−1]

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝐶(𝑥)
𝐿𝐴𝐶(𝑥)

...
𝐿[𝑟−1]

𝐴 𝐶(𝑥)

⎞⎟⎟⎟⎠ = 𝑇 (𝑥) (3.15)

Definition 3.16 (Diffeomorphism)
If a function 𝑇 : R𝑛𝑥 → R𝑛𝑥 is continuously differentiable and if the inverse function 𝑇 (𝑥)−1

exists and is also continuously differentiable such that

𝑇−1(𝑇 (𝑥)) = 𝑥,

then 𝑇 is called Diffeomorphism.
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Assuming all functions are sufficiently often continuously differentiable such that 𝑇 (𝑥) in
(3.15) is a diffeomorphism, then system (3.7) can be uniquely transformed to a system
representation expressed in the 𝑧 coordinates. Smooth trajectories in the original coordinate
system have smooth, unique representations in the 𝑧 coordinates.⎛⎜⎜⎜⎝

𝑧̇(1)

...
𝑧̇(𝑟−1)

𝑧̇(𝑟)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑧(2)

...
𝑧(𝑟)

𝐿[𝑟]
𝐴 𝐶(𝑥)

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
0
...
0

𝐿𝐵𝐿
[𝑟−1]
𝐴 𝐶(𝑥)

⎞⎟⎟⎟⎠𝑢 (3.17)

If the control 𝑢 is chosen as the feedback law

𝑢(𝑥) = 1
𝐿𝐵𝐿

[𝑟−1]
𝐴 𝐶(𝑥)

(︀
−𝐿[𝑟]

𝐴 𝐶(𝑥) + 𝜈
)︀

(3.18)

system (3.17) is linearized to the form⎛⎜⎜⎜⎝
𝑧̇(1)

...
𝑧̇(𝑟−1)

𝑧̇(𝑟)

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
𝑧(2)

...
𝑧(𝑟)

𝜈

⎞⎟⎟⎟⎠ (3.19a)

𝑦 = 𝑧(1) (3.19b)

The linearized system is a cascade of 𝑟 integrators and the original output 𝐶 = 𝑧(1) is a
linear function of the new control 𝜈 which can be chosen in an outer loop using linear control
theory.
In case the relative degree of the output is less than the system order, feedback linearization
can still be feasible. Similarly a diffeomorsphism can be used to transform the system to
more advantageous coordinates. But the transformed system will have states which do not
influence the output and which are consequentially unobservable. These unobservable states
are called internal or zero dynamics. Although the internal dynamics are independent from
the system output and the linearized part of the dynamics, they are still relevant for the
overall system dynamics. The overall system is stable if and only if the internal and the
linearized dynamics are both stable.
In case of the drag tracking problem considered in the next section the system is of full
relative degree, hence a treatment of internal dynamics is not required.

3.1.2 Drag Tracking in the Energy Domain

Energy can be a more advantageous independent variable for re-entry problems than time,
because the elimination of time removes the strict relationship between altitude and velocity.
This opens a new degree of freedom if the problem is time invariant and the final time is
free. Energy is a function of the system state, thus an energy based tracking law adapts to
disturbances in the states by shifting the energy tracking point. Furthermore energy allows
for a better approximation of the range integral in case of a steep flight path angle. To
capitalize on these advantages the tracking law in the energy domain is derived.
The longitudinal dynamics can be separated from the translational dynamics by assuming
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a non rotating planet. The longitudinal dynamics in the energy domain (cf. (2.23)) are

ℎ′ = − 1
𝐷

sin 𝛾, (3.20a)

𝑣′ = 𝐷 + 𝑔 sin 𝛾
𝐷𝑣

, (3.20b)

𝛾′ = − 𝐿

𝐷

cos 𝜎
𝑣2
−

(︁𝑣
𝑟
− 𝑔

𝑣

)︁ cos 𝛾
𝐷𝑣

. (3.20c)

Drag acceleration is considered as the system output

𝑦 = 𝐷 = 1
2𝑣

2𝜌𝐶𝐷

𝑆

𝑚
. (3.21)

An additional advantage of the energy representation is that the order of the system is
reduced from three to two. 𝐸 is considered an additional input. The equations for ℎ′ and
𝑣′ are not independent [Bha98], because with respect to energy they have the differential
relation

d𝐸
d𝐸 = 1 = 𝑣𝑣′ + 𝑔ℎ′. (3.22)

A minimal representation of the system needs to retain only either ℎ′ or 𝑣′. Arbitrarily it is
chosen to retain ℎ′. If 𝐸 and ℎ are known the velocity can be computed by solving (2.20)
for 𝑣.
As control for system (3.20) we define the vertical lift-over-drag (vLoD) ratio.

𝑢vLoD := 𝐿

𝐷
cos(𝜎) (3.23)

This has the advantage that principally not only the bank angle but also a modulation of
the angle of attack could be used to achieve the commanded vLoD.
The starting point for the application of feedback linearization is the minimal system rep-
resentation (︂

ℎ′

𝛾′

)︂
=

(︃
− sin(𝛾)

𝐷[︁
𝑔

𝐷𝑣2 − 1
(ℎ+𝑟𝑀 )𝐷

]︁
cos(𝛾)

)︃
+

(︂
0
− 1

𝑣2

)︂
𝑢vLoD (3.24a)

= 𝐴(𝑥) + 𝐵(𝑥) 𝑢vLoD (3.24b)

with drag as system output. Following the methodology of feedback linearization the first
step is to derive the drag output equation with respect to energy until the control appears
explicitly. In the following 𝑀 is the Mach number as defined in (2.6) and 𝑐(ℎ) is the local
speed of sound as a function of altitude. Under the assumption that the gravitational
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acceleration 𝑔 is constant, the first and second order energy derivatives of drag are:

𝑦 = 𝐷 = 1
2𝜌(ℎ)𝑣2𝐶𝐷(𝑀) 𝑆

𝑚
(3.25a)

𝑦′ = 𝐷′ = 𝐷

(︂
1
𝜌

d𝜌
dℎℎ

′ + 2
𝑣
𝑣′ + 1

𝐶𝐷

d𝐶𝐷

d𝑀 𝑀 ′

)︂
(3.25b)

𝑦′′ = 𝐷′′ = 𝐷

(︂
1
𝜌

d𝜌
dℎℎ

′ + 2
𝑣
𝑣′ + 1

𝐶𝐷

d𝐶𝐷

d𝑀 𝑀 ′

)︂2

(3.25c)

+𝐷

[︂
1
𝜌

d𝜌
dℎℎ

′′ +
(︂

1
𝜌

d2𝜌

dℎ2
− 1
𝜌2

(︂
d𝜌
dℎ

)︂2)︂
(ℎ′)2 + 2

𝑣
𝑣′′ − 2

𝑣2
(𝑣′)2

]︂
+𝐷

[︂
1
𝐶𝐷

d𝐶𝐷

d𝑀 𝑀 ′′ +
(︂

1
𝐶𝐷

d2𝐶𝐷

d𝑀 2
− 1
𝐶2

𝐷

(︂
d𝐶𝐷

d𝑀

)︂2)︂
(𝑀 ′)2

]︂
.

In the following we calculate all derivatives appearing in 𝐷′′. The energy derivatives of
Mach are

𝑀 ′ =
𝑣′𝑐− 𝑣ℎ′ d𝑐

dℎ

𝑐2
(3.26)

𝑀 ′′ = 𝑣′′

𝑐
−
𝑣 d𝑐

dℎ
(ℎ′)2

𝑐2
−

2𝑣′ d𝑐

dℎ
ℎ′

𝑐2
+

2 d2𝑐

dℎ2 𝑣(ℎ′)2

𝑐3
(3.27)

The derivatives d𝜌

dℎ
, d2𝜌

dℎ2 , d𝐶𝐷

d𝑀
, d2𝐶𝐷

d𝑀2 , d𝑐

dℎ
, d2𝑐

dℎ2 are given as part of the model. The second energy
derivatives of altitude and velocity are

ℎ′′ = sin(𝛾)𝐷′

𝐷2
− 𝐷 cos(𝛾)𝑦′

𝐷2
(3.28)

𝑣′′ = 𝑔𝑣 (𝐷 cos(𝛾)𝑦′ − sin(𝛾)𝐷′)
𝐷2𝑣2

− 𝐷𝑣′ (𝐷 + 𝑔 sin(𝛾))
𝐷2𝑣2

(3.29)

It is now obvious that the first time the control 𝑢vLoD enters the output’s derivatives explicitly
is in 𝐷′′ through the term 𝛾′ (cf. (3.21)). 𝛾′ is contained in ℎ′′ and 𝑣′′. The relative degree
of the drag output is therefore two. The next step is to insert the calculated derivatives in
𝐷′′ and factor out all appearances of the control 𝑢vLoD and write 𝐷′′ as

𝐷′′ = 𝐿[2]
𝐴 𝐶(𝑥) + 𝐿𝐵𝐿

[1]
𝐴 𝐶(𝑥)𝑢vLoD = 𝑎+ 𝑏𝑢vLoD (3.30)

The factoring of 𝑢vLoD is tedious because the terms 𝑎 and 𝑏 are very large (see Appendix D).
Inserting the linearizing feedback control law

𝑢vLoD = 1
𝑏

(−𝑎+𝐷′′
𝑟 + 𝜈) (3.31)

leads to the system

𝑧′
1 = 𝐷′ (3.32a)
𝑧′

2 = 𝐷′′ = 𝑎+ 𝑏𝑢vLoD = 𝜈 (3.32b)
𝑦 = 𝐷 = 𝑧1. (3.32c)

The dynamic system between input 𝜈 and output 𝑦 is linear, time invariant, and in double-
integrator form.
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The remaining task is to ensure that the output tracks the reference drag profile 𝐷𝑟. Let 𝐷𝑟

be at least two times continuously differentiable with respect to energy and let 𝛥𝐷 = 𝐷−𝐷𝑟

and 𝛥𝐷′ = 𝐷′ −𝐷′
𝑟. For tracking the reference profile a controller of the form

𝜈 = −𝐾𝑃𝛥𝐷 −𝐾𝐷𝛥𝐷
′ −𝐾𝐼

ˆ
𝛥𝐷 d𝐸 (3.33)

is used. Combining (3.31) and (3.33) yields the control law

𝑢com = 1
𝑏

(︂
−𝑎+𝐷′′

𝑟 −𝐾𝑃𝛥𝐷 −𝐾𝐷𝛥𝐷
′ −𝐾𝐼

ˆ
𝛥𝐷 d𝐸

)︂
(3.34)

resulting into the closed loop system

𝑧′
1 = 𝑧2 (3.35a)

𝑧′
2 = 𝐷′′

𝑟 −𝐾𝑃𝛥𝐷 −𝐾𝐷𝛥𝐷
′ −𝐾𝐼

ˆ
𝛥𝐷 d𝐸 (3.35b)

With appropriate positive gains 𝐾𝑃 , 𝐾𝐷 and 𝐾𝐼 it is obvious that the energy varying
equilibrium of the closed loop system (3.35) is at [𝐷𝑟, 𝐷

′
𝑟]ᵀ. Consequently the closed loop

tracking error dynamics (3.36) with error states 𝑒1 = 𝛥𝐷 and 𝑒2 = 𝛥𝐷′ have a unique
equilibrium at 𝑒 = [𝑒1,𝑒2]ᵀ = [0, 0]ᵀ.

𝑒′
1 = 𝑒2 (3.36a)
𝑒′

2 = 𝐷′′ −𝐷′′
𝑟 (3.36b)

= 𝐷′′
𝑟 −𝐾𝑃𝑒1 −𝐾𝐷𝑒2 −𝐾𝐼

ˆ
𝑒1 d𝐸 −𝐷′′

𝑟

= −𝐾𝑃𝛥𝐷 −𝐾𝐷𝛥𝐷
′ −𝐾𝐼

ˆ
𝛥𝐷 d𝐸

3.1.3 Induced Time Domain Gain Scheduling
The synthesis of the tracking law based on energy has the convenient consequence of working
with a system of full relative degree. Another advantage of this approach is pointed out
by Tu [Tu00] through analyzing the relationship between the gains in the time and energy
domain. To make this relationship obvious the integral part of the control action is neglected,
that is 𝐾𝐼 := 0, and perfect cancellation of the nonlinearities is assumed. Then the energy
domain closed loop error dynamics are

𝛥𝐷′′ +𝐾𝐷,𝐸𝛥𝐷
′ +𝐾𝑃,𝐸𝛥𝐷 = 0 (3.37a)

and the time domain closed loop error dynamics are

𝛥𝐷̈ +𝐾𝐷,𝑡𝛥𝐷̇ +𝐾𝑃,𝑡𝛥𝐷 = 0. (3.38)
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The derivatives of the tracking error in the energy domain are

𝛥𝐷′ = 𝛥𝐷̇

𝐸̇
(3.39a)

𝛥𝐷′′ =
𝛥𝐷̈𝐸̇ − 𝛥𝐷̇𝐸̈

𝐸̇

𝐸̇2
= 𝛥𝐷̈𝐸̇ −𝛥𝐷′𝐸̈

𝐸̇2
. (3.39b)

If (3.39) are substituted in (3.37a) and rearranged into the form of (3.38) one obtains the
corresponding gains in the time domain

𝐾𝑃,𝑡 = 𝐾𝑃,𝐸𝐸̇
2 (3.40a)

𝐾𝐷,𝑡 = 𝐾𝐷,𝐸𝐸̇ −
𝐸̈

𝐸̇
. (3.40b)

Obviously if the controller is designed in the energy domain with constant gains 𝐾𝑃,𝐸, 𝐾𝐷,𝐸

this corresponds to a scheduling of the time domain gains. 𝐾𝑃,𝑡 increases when the energy
derivative is high, meaning the controller is more aggressive in regions of high dynamic
change. Because 𝐸̈/𝐸̇ ≈ 0 the derivative gain 𝐾𝐷,𝑡 is likewise predominantly scheduled on
the energy derivative.

3.1.4 Cross Range Control and Bank Angle Command Generation

The commanded vLoD (3.31) is realized using the bank angle 𝜎 ∈ [−𝜋,𝜋]. The bank angle
magnitude |𝜎| ∈ [0,𝜋] is obtained by solving (3.23) for |𝜎|.

|𝜎| = arccos
(︂
𝐷

𝐿
𝑢com

)︂
(3.41)

The bank angle sign is left to control the crossrange. The crossrange control is based on a
deadband defined on the heading error. If the heading error exceeds the deadband threshold,
a rapid change of the bank angle to the opposite sign is commanded. This maneuver is called
bank reversal. Obviously bank angles of opposite sign result in equal vertical lift, but the
lateral lift component is in opposite direction. Through the decoupling of downrange and
crossrange logic, the bank reversal maneuver is neglected in the derivation of the tracking
law and is thus treated as a perturbation in the aerodynamic forces.
This control strategy has singularities at full lift up or lift down. If⃒⃒⃒⃒

𝐷

𝐿
𝑢com

⃒⃒⃒⃒
> 1 (3.42)

the system is not able to produce the required lift to match the desired vLoD. The bank
angle is saturated and the ability to control the crossrange is lost.

𝐷

𝐿
𝑢com > 1 =⇒ |𝜎| = 0 (3.43a)

𝐷

𝐿
𝑢com < − 1 =⇒ |𝜎| = 𝜋 (3.43b)

The loss of crossrange control can be avoided by limiting the bank angle magnitude to an
interval [0 + 𝑠, 𝜋− 𝑠], 0 < 𝑠 < 𝜋

2 . But as soon as the required vLoD cannot be matched, the
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tracking of the reference drag profile is not guaranteed. This situation should be avoided
by carefully budgeting the available control authority. This concludes the synthesis of the
drag tracking control law.

3.1.5 Drag Tracking Conclusion

Drag tracking is relatively robust against perturbations in the aerodynamic coefficients and
the atmospheric model. The drag control law evaluates the model locally to determine the
linearizing control. The stabilizing PID controller does only depend on the model indirectly
via the gain scheduling, otherwise the PID feedback component is based only on the direct
physical measurement of the drag acceleration by the IMU. The incurred drag error is
accumulated and taken into account using integral control. In most state feedback methods
and for trajectory prediction the entire atmosphere model must be taken into account at
some point which makes these methods more susceptible to errors in the aerodynamic
coefficients and the atmospheric density.
The representation of the reference trajectory as drag-energy profile has the advantage that
the path constraints can be completely represented in the energy domain (cf. Section 2.6).
Although the feedback controller does not take into account these constraints directly, it
is possible to include them in the planning of the drag profile. The unified constraint
representation enables the use of comparatively simple geometric methods to shape the
drag profile online.
The decoupling of the downrange and crossrange is instrumental to the feedback design. But
during the bank angle reversals the longitudinal tracking is suspended, and the tracking error
increases, which can lead to a reduced targeting accuracy, if there is not enough time to
correct the introduced error after the maneuver.

3.2 Other Approaches to Entry Guidance and Control

In the following the central ideas of some alternative entry guidance concepts are introduced.
The purpose of these brief reviews is to understand the main advantages and disadvantages
of each method. Our conclusions are stated in Section 3.3.

3.2.1 Multi-Variable Tracking

Roenneke [Roe93] suggests the tracking of reference profiles for multiple states using a
gain scheduled, time dependent Riccati controller. Let 𝑟𝑟(𝑡), 𝑣𝑟(𝑡), 𝛾𝑟(𝑡), 𝑡 ∈ [𝑡𝑠; 𝑡𝑓 ] be
the reference state profiles and 𝜎𝑟(𝑡) the reference bank angle command. The equations of
motion are linearized numerically at the reference state at times 𝑡(𝑘) ∈ [𝑡𝑠; 𝑡𝑓 ], 𝑘 = 1, ..., 𝑁 .
The linearization is of the form

𝛿𝑥̇ = 𝐴(𝑡(𝑘))𝛿𝑥+𝐵(𝑡(𝑘))𝛿𝜎. (3.44)

The state deviation is 𝛿𝑥 = (𝑟−𝑟𝑟, 𝑣−𝑣𝑟, 𝛾−𝛾𝑟)ᵀ and the bank angle deviation is 𝛿𝜎 = 𝜎−𝜎𝑟.
At each time 𝑡(𝑘) a control law of the form

𝛿𝜎 = −𝐹 (𝑡(𝑘))𝛿𝑥 (3.45)



3.2 Other Approaches to Entry Guidance and Control 27

with

𝐹 (𝑡(𝑘)) = 1
𝑞0
𝐵ᵀ(𝑡(𝑘))𝑃 (𝑡(𝑘)) (3.46)

is obtained. The matrix 𝑃 (𝑡(𝑘)) is the solution of the continuous time algebraic Riccati
equation

0 = 𝑄− 𝑃𝐵 1
𝑞0
𝐵ᵀ𝑃 + 𝑃𝐴+ 𝐴ᵀ𝑃. (3.47)

𝑞0 and 𝑄 = diag(𝑞1,𝑞2,𝑞3) are the weighting coefficients of the infinite horizon quadratic
performance index

𝑃 = lim
𝑡𝑓 →∞

ˆ 𝑡𝑓

𝑡𝑠

(𝑞1𝛿𝑟
2 + 𝑞2𝛿𝑣

2 + 𝑞3𝛿𝑦
2 + 𝑞0𝛿𝜎

2) d𝑡. (3.48)

The gain matrix 𝐹 (𝑡) is interpolated between the linearization points.
Roenneke shows that this control law can handle state perturbations of up to 10 %, lift-to-
drag ratio perturbation of 4 % and atmospheric density variations of up to 50 %.

3.2.2 Numeric Predictor-Corrector Guidance

A numeric predictor uses numerical integration of the equations of motion to predict the
future trajectory during flight. Based on the prediction a correction of the control function
is performed to eliminate the predicted final state error. As an example we consider the
correction method suggested by Spreng [Spr11].
In this approach the reference control sequence is specified by piecewise constant segments
of the vertical lift vector 𝑢𝑟(𝐸), 𝐸 ∈ [𝐸𝑠; 𝐸𝑓 ]. The energy points 𝐸1, ..., 𝐸𝑛 of bank reversals
are an additional input. At a fixed energy point 𝐸̄ let 𝐿𝑐𝑢𝑟 = 𝑢𝑟(𝐸̄) denote the reference
vertical lift, and let 𝐸𝑛𝑥𝑡 ∈ {𝐸1, ..., 𝐸𝑛} with 𝐸𝑛𝑥𝑡 < 𝐸̄ be the next reference bank reversal
point.
The predictor function performs three trajectory predictions: The first one uses the reference
lift 𝐿𝑐𝑢𝑟 and reference bank reversal point 𝐸𝑛𝑥𝑡. Let the achieved downrange and crossrange
of this prediction be D(𝐿𝑐𝑢𝑟, 𝐸𝑛𝑥𝑡) and C(𝐿𝑐𝑢𝑟, 𝐸𝑛𝑥𝑡). For the second prediction a small
change 𝛿𝐿 of the vertical lift in the current segment is considered. Let D(𝐿𝑐𝑢𝑟 + 𝛿𝐿,𝐸𝑛𝑥𝑡)
and C(𝐿𝑐𝑢𝑟 + 𝛿𝐿,𝐸𝑛𝑥𝑡) be the resulting downrange and crossrange. For the third prediction
a small change 𝛿𝐸 of the next bank reversal point is applied. Let the resulting downrange
and crossrange be D(𝐿𝑐𝑢𝑟, 𝐸𝑛𝑥𝑡 + 𝛿𝐸) and C(𝐿𝑐𝑢𝑟, 𝐸𝑛𝑥𝑡 + 𝛿𝐸).
The partial derivatives of downrange and crossrange with respect to changes in the vertical
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lift and the point of bank reversal can be approximated as

∂D

∂𝐿
≈ D(𝐿𝑐𝑢𝑟 + 𝛿𝐿,𝐸𝑛𝑥𝑡)−D(𝐿𝑐𝑢𝑟)

𝛿𝐿
, (3.49a)

∂D

∂𝐸
≈ D(𝐿𝑐𝑢𝑟, 𝐸𝑛𝑥𝑡 + 𝛿𝐸)−D(𝐿𝑐𝑢𝑟)

𝛿𝐸
, (3.49b)

∂C

∂𝐿
≈ C(𝐿𝑐𝑢𝑟 + 𝛿𝐿,𝐸𝑛𝑥𝑡)− C(𝐿𝑐𝑢𝑟)

𝛿𝐿
, (3.49c)

∂C

∂𝐸
≈ C(𝐿𝑐𝑢𝑟, 𝐸𝑛𝑥𝑡 + 𝛿𝐸)− C(𝐿𝑐𝑢𝑟)

𝛿𝐸
. (3.49d)

The adjustments 𝛥𝐿 and 𝛥𝐸 required to eliminate the downrange and crossrange errors
𝛥D and 𝛥C can be approximated by solving(︂

𝛥D

𝛥C

)︂
=

(︂
∂D

∂𝐿

∂D

∂𝐸
∂C

∂𝐿

∂C

∂𝐸

)︂(︂
𝛥𝐿
𝛥𝐸

)︂
. (3.50)

For simplicity assume the matrix inversion is feasible, then we obtain(︂
𝛥𝐿
𝛥𝐸

)︂
=

(︂
∂D

∂𝐿

∂D

∂𝐸
∂C

∂𝐿

∂C

∂𝐸

)︂−1 (︂
𝛥D

𝛥C

)︂
. (3.51)

In subsequent guidance calls the adapted control profile is used as the new reference.
As previously discussed the prediction of the future trajectory, based on the reference aero-
dynamic model, is not accurate in a disturbed aerodynamic environment. To improve the
trajectory prediction the lift and drag accelerations of the model are compared to the actual
accelerations in each guidance cycle and the aerodynamic model is iteratively adjusted to
reduce the error.
The numeric predictor-corrector approach can be seen as sensitivity analysis of the control
variables 𝐿𝑐𝑢𝑟, 𝐸𝑛𝑥𝑡. Equation (3.51) can be written as a first order Taylor expansion around
the reference control. (︂

𝐿
𝐸

)︂
new

=
(︂
𝐿𝑐𝑢𝑟

𝐸𝑛𝑥𝑡

)︂
+

(︂
∂D

∂𝐿

∂D

∂𝐸
∂C

∂𝐿

∂C

∂𝐸

)︂−1 (︂
𝛥D

𝛥C

)︂
(3.52)

The inverted matrix contains the sensitivity of the control variables with respect to the
downrange and crossrange.
We will come back to this idea in Chapter 5 where we perform a Taylor expansion of the
necessary optimality conditions of a nonlinear program.

3.2.3 Moving Horizon Control
Moving horizon control repeatedly solves an optimal control process1 on a finite time horizon
to achieve a sub-optimal closed loop control for an infinite time horizon. Moving horizon
control is also called model predictive control (MPC). In MPC theory we differentiate be-
tween the process time 𝑡 ∈ [𝑡𝑠; 𝑡𝑓 ] and the MPC time 𝜏 ∈ [0; 𝑇 ], as shown in Figure 3.3.
𝑇 is called prediction horizon. At the current time 𝑡𝑘 the MPC time is 𝜏𝑠 := 0. Starting

1 The term optimal control process is formally defined in the subsequent Chapter 4.
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from the current state 𝑥𝑘 = 𝑥(𝑡𝑘) the trajectory of the process is predicted on the prediction
horizon 𝑇 . The control 𝑢̃𝑘(𝜏), 𝜏 ∈ [0; 𝑇 ] is determined such, that the objective function of
the optimal control process in minimized over 𝑇 .

Figure 3.3: Model predictive control scheme

At 𝑡𝑘+1 = 𝑡𝑘 + 𝛥𝑡 the horizon is shifted and the optimal control process is solved again.
This repeats at a fixed rate. MPC is thus a clock based sequence of sub-optimal open loop
solutions. If the time horizon is sufficiently long, i.e. 𝑡𝑠 +𝑇 ≥ 𝑡𝑓 , the control 𝑢̃𝑘(𝜏) is optimal
for the entire process.
An ideal MPC assumes that the computation of the control is instant, thus 𝑢̃𝑘(𝜏) is imple-
mented on the interval [𝑡𝑘; 𝑡𝑘+1], until at 𝑡𝑘+1 the new control 𝑢̃𝑘+1 becomes available. A
major difficulty for actual implementations is the lag introduced by the computation time.
In each step the solution of a nonconvex optimal control process requires the solution of
a nonlinear optimization problem. Methods that exploit the similarity of the subsequently
solved optimization problems are investigated by e.g. Diehl [Die02] to achieve a decisive
speed-up of the required computations.
Bollino [Bol06] demonstrates the unique advantage of MPC to take into account the con-
straints on the control and the state during closed loop control. In MPC the control com-
mand is directly available from the solution of the optimization problem without requiring
a trajectory tracking controller. In particular nonlinear MPC methods therefore have the
potential to overcome the separation between translational and rotational dynamics through
formulation of the optimal control process based on the joint dynamcis. The computational
requirements and the complexity of solving optimal control problems are the major reasons
that so far hindered MPC from becoming a predominantly used control strategy.
Nonlinear MPC has also been investigated in the frame of this project as master thesis
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subject of Schomakers [Sch14]. Schomakers investigated the stability and performance of
an NMPC controller with terminal costs depending on the prediction horizon. While for
sufficiently long horizons the NMPC method proved to be successful in the compensation
of strong state errors, Schomakers showed that errors in the aerodynamic model are much
more difficult to compensate. The strong dependency on the accuracy of the model and
the lack of a direct counterpart to integral control motivate the combination of MPC with
an adaptive model, e.g. through using a Kalman filter to estimate model parameters online.
MPC in combination with an adaptive model is arguably the preferable choice for the control
of any dynamic system, if sufficient computational power is available.

3.3 Challenges of Atmospheric Entry Guidance
Atmospheric entry guidance is a very challenging problem for multiple reasons:
The first one is the combination of the strong nonlinearity of the equations of motion with
the large uncertainty in the atmosphere model. Prediction based methods are required to
achieve the landing accuracy required for future missions. However prediction is based on
the integration of the equations of motion and is thus susceptible to an erroneous model.
The ability to update the model online is a key factor to achieve a precise landing. The
availability and accuracy of sensor data is thus of great importance, because it is the only
possibility to draw conclusions concerning model discrepancies. During the atmospheric
entry phase so far only IMU measurements are available. This makes the in-flight adaption of
parametrized models problematic, because discerning the influence of individual parameters
from the measurements can be difficult and must heavily rely on a priori knowledge. In-flight
dynamic pressure measurements1 could improve this situation.
A second challenge is the handling of constraints on the control and the state. The entry
capsule has a low lift-to-drag ratio and bank angle rotation only provides a limited control
effect, such that saturation of the control is likely. Only MPC methods are able to take
constraints into account during the control phase. Otherwise a guarantee to satisfy the
state constraints requires additional guidance modes based on dedicated, boundary tracking
controllers, which severely complicates the G&C design.
A partial solution to that problem is the representation of the path constraints in the drag-
energy domain. A less desirable alternative is checking the path constraints only during the
design of the reference trajectory and include sufficient margin, such that it is unlikely that
the constraints become active during flight.
Lastly it would be an advantage to manage downrange and crossrange at the same time
to eliminate the error induced by neglecting the bank reversals and to pro-actively prevent
problems related to the singularities at full lift-up or lift-down. Unified management of
downrange and crossrange however prevents the decoupling of the equations of motion
which is the basis for classical drag tracking.
The first choice to solving these problems is MPC. If the computational power does not
permit the use of MPC, an alternative approach are guidance systems that combine online
trajectory adaption and trajectory tracking. The trajectory is only updated at a low rate
to satisfy the computational constraints and the control commands are determined by a

1 An example is the Mars Entry Atmospheric Data System (MEADS) that was used by the MSL [Kar09].
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tracking controller that tracks the newest available trajectory at a high rate. The guidance
is split up into two loops, one slow trajectory computation loop and one fast tracking loop.
This is also referred to as predictive tracking or more generally as two degree-of-freedom
control. This approach combines the strength of prediction based correction, with the low
computational requirement of tracking. Predictive tracking was for instance implemented
in the space shuttle guidance (Harpold and Graves [Har79]) and numerous other authors
suggest this general design ([Lu98][Tu00]).
This concludes the overview of entry guidance and control concepts. We come back to these
preliminary considerations in Chapter 6.





CHAPTER 4
Preliminaries of Optimal Control and Optimization Theory

This chapter contains definitions and theorems of different approaches to optimization and
optimal control theory. Together with Appendix Spaces and Norms this chapter provides a
minimal formal framework for the thesis. The remarks are based on different sources which
are stated individually within the sections.

4.1 Dynamic Optimization
Dynamic or infinite dimensional optimization is concerned with the optimization of dynamic
control systems over an independent variable which is generally called time although it may
have another meaning. The optimization is carried out over a linear vector space of functions
equipped with a norm as a distance measure. The space of admissible functions depends on
the analysis method. There are three distinct approaches to dynamic optimization: Calculus
of Variations, Dynamic Programming and Optimal Control. In the following the standard
definition of an optimal control problem (OCP) is given and the fundamental theorems of
Dynamic Programming and Optimal Control Theory are stated.

4.1.1 Formulation of Optimal Control Processes
An optimal control process describes the performance of a (constrained) control system
over time according to a cost functional. In the following the building blocks of an optimal
control process are defined.
Let 𝑥(𝑡) ∈ R𝑛𝑥 be the state at time 𝑡 and 𝑢(𝑡) ∈ R𝑛𝑢 the control at time 𝑡. The time 𝑡 is
defined over an interval 𝑡 ∈ [𝑡𝑠,𝑡𝑓 ]. Without loss of generality we assume the start time 𝑡𝑠 is
fixed, while the final time 𝑡𝑓 may be fixed or free. The control influences the state according
to a system of first order ordinary differential equations (ODEs).

Definition 4.1 (System dynamic (nonlinear, time variant))
Let 𝑓 : R𝑛𝑥 × R𝑛𝑢 × [𝑡𝑠,𝑡𝑓 ] → R𝑛𝑥 be continuous and continuously differentiable w.r.t. all
arguments. The ordinary differential equation

𝑥̇ = 𝑓(𝑥(𝑡),𝑢(𝑡),𝑡), 𝑡 ∈ [𝑡𝑠,𝑡𝑓 ]

is called system dynamic.

33
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Definition 4.2 (Solution of the system)
Let 𝑥 : [𝑡𝑠,𝑡𝑓 ] → R𝑛𝑥 be continuous and piecewise continuously differentiable and let 𝑢 :
[𝑡𝑠,𝑡𝑓 ]→ R𝑛𝑢 be piecewise continuous. If it holds for all continuous arcs of 𝑢(𝑡) that

𝑥̇ = 𝑓(𝑥(𝑡),𝑢(𝑡),𝑡)

then the pair (𝑥,𝑢) is called solution to the differential equation (4.2) and 𝑥(𝑡) is called
trajectory corresponding to 𝑢(𝑡).

The solution of the dynamics can be subject to boundary conditions and mixed state and
control constraints:
Definition 4.3 (Boundary conditions)
The boundary conditions on the initial state 𝑥(𝑡𝑠) and the final state 𝑥(𝑡𝑓 ) can be given by
continuously differentiable functions 𝜓𝑠 : R𝑛𝑥 → R𝑛𝑟𝑠 and 𝜓𝑓 : R𝑛𝑥 → R𝑛𝑟𝑓

𝜓𝑠(𝑥(𝑡𝑠)) = 0 (initial condition) (4.3a)
𝜓𝑓 (𝑥(𝑡𝑓 )) = 0 (final condition) (4.3b)

In many applications the boundary conditions take the form

𝜓𝑠(𝑥(𝑡𝑠)) = 𝑥(𝑡𝑠)− 𝑥𝑠, (4.3c)
𝜓𝑓 (𝑥(𝑡𝑓 )) = 𝑥(𝑡𝑓 )− 𝑥𝑓 . (4.3d)

This is referred to as standard boundary conditions.
Definition 4.4 (State and control constraints)
With a continuously differentiable function 𝑐 : R𝑛𝑥 × R𝑛𝑢 × [𝑡𝑠,𝑡𝑓 ] → R𝑛𝑐 mixed state and
control constraints can be given with

𝑐(𝑥(𝑡),𝑢(𝑡),𝑡) ≤ 0, for all 𝑡 ∈ [𝑡𝑠,𝑡𝑓 ]. (4.4a)

If a constraint 𝑐(𝑗), 1 ≤ 𝑗 ≤ 𝑛𝑐 is not depending on the control, 𝑐(𝑗) is called pure state
constraint.

𝑐(𝑗)(𝑥(𝑡),𝑡) ≤ 0. (4.4b)

Analogously if constraint 𝑐(𝑗) is not depending on the state, 𝑐(𝑗) is called pure control con-
straint.

𝑐(𝑗)(𝑢(𝑡),𝑡) ≤ 0. (4.4c)

Definition 4.5 (Control set)
The pure control constraints and the mixed state and control constraints may restrict the
control 𝑢(𝑡) to a nonempty, convex and closed set U(𝑡) ⊂ R𝑛𝑢

𝑢(𝑡) ∈ U(𝑡), for all 𝑡 ∈ [𝑡𝑠,𝑡𝑓 ].

U(𝑡) is called control set. A control 𝑢(𝑡) ∈ U(𝑡) is called admissible.

A trajectory 𝑥(𝑡) is called feasible for the time 𝑡𝑓 if it fulfills all above conditions for all



4.1 Dynamic Optimization 35

𝑡 ∈ [𝑡𝑠,𝑡𝑓 ]. The performance of a solution is measured using a scalar cost functional 𝐽
comprised of the Meyer (or terminal) cost 𝑚 and the Lagrange (or running) cost 𝑙.

Definition 4.6 (Cost functional)
Let the functions 𝑚 : R𝑛𝑥 × [𝑡𝑠,𝑡𝑓 ] → R and 𝑙 : R𝑛𝑥 × R𝑛𝑢 × [𝑡𝑠,𝑡𝑓 ] → R be continuously
differentiable w.r.t to their arguments. A function of the form

𝐽(𝑥(𝑡),𝑢(𝑡),𝑡) = 𝑚(𝑥(𝑡𝑓 ),𝑡𝑓 ) +
ˆ 𝑡𝑓

𝑡𝑠

𝑙(𝑥(𝑡),𝑢(𝑡),𝑡) d𝑡

is called cost or objective functional. Depending on the form of the cost functional the OCP
is called

• Bolza problem if 𝑚 ̸≡ 0, 𝑙 ̸≡ 0
• Mayer problem if 𝑚 ̸≡ 0, 𝑙 ≡ 0
• Lagrange problem if 𝑚 ≡ 0, 𝑙 ̸≡ 0.

An optimal control process can be written in compact form as so called optimal control
problem (OCP).

Problem 4.7 (Standard Optimal Control Problem)
The infinite dimensional optimization problem

min
𝑥,𝑢,𝑡𝑓

𝐽(𝑥(𝑡),𝑢(𝑡),𝑡) = 𝑚(𝑥(𝑡𝑓 ),𝑡𝑓 ) +
ˆ 𝑡𝑓

𝑡𝑠

𝑙(𝑥(𝑡),𝑢(𝑡),𝑡) d𝑡 (4.7a)

s.t. 𝑥̇ = 𝑓(𝑥(𝑡),𝑢(𝑡),𝑡) (4.7b)
𝜓𝑠(𝑥(𝑡𝑠)) = 0 (4.7c)
𝜓𝑓 (𝑥(𝑡𝑓 )) = 0 (4.7d)

𝑐(𝑥(𝑡),𝑢(𝑡),𝑡) ≤ 0 (4.7e)

is called standard optimal control problem OCP(4.7). If the problem does not depend on time
explicitly it is called autonomous.

The goal of the minimization task is to find an optimal control function ⋆
𝑢(𝑡) ∈ 𝐿∞ and a

corresponding state trajectory ⋆
𝑥 ∈ 𝑊 1,∞ for which 𝜀 > 0 exists such that

𝐽( ⋆
𝑥,

⋆
𝑢) ≤ 𝐽(𝑥,𝑢)

for all admissible (𝑥,𝑢) with ‖𝑥 − ⋆
𝑥‖∞ < 𝜀. The pair ( ⋆

𝑥,
⋆
𝑢) is called strong local minimum

of OCP(4.7) (cf. Appendix Strong and Weak Minima). If the 𝜀 neighborhood includes all
admissible state trajectories the minimum is called global.
To solve OCP(4.7) with the help of a computer program the problem needs to be discretized
into a finite dimensional programming problem, because obviously the computer only has
a limited amount of memory. The problem can be discretized either before or after the
evaluation of optimality conditions. This leads to the so called direct and indirect solution
methods. This thesis focuses on the direct solution approach detailed in Section 4.4. A
conceptual overview of an indirect approach is given in Section 4.1.4.
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4.1.2 Problem Transformations
Solving an OCP is often based on transforming or reformulating the standard problem.
Some important problem transformations are illustrated in the following.

Mayer Transformation

A Bolza problem can be transformed into a Mayer problem by defining a new state vari-
able:

𝑥(𝑛𝑥+1) :=
ˆ 𝑡𝑓

𝑡𝑠

𝑙(𝑥(𝑠),𝑢(𝑠),𝑠) d𝑠, 𝑡 ∈ [𝑡𝑠,𝑡𝑓 ] (4.8)

Then 𝑥(𝑛𝑥+1) satisfies the initial value problem

𝑥̇(𝑛𝑥+1) = 𝑙(𝑥(𝑡),𝑢(𝑡),𝑡), 𝑡 ∈ [𝑡𝑠,𝑡𝑓 ], 𝑥(𝑛𝑥+1)(𝑡𝑠) = 0. (4.9)

With the augmented state vector 𝑥̄ :=
(︂

𝑥(𝑡)
𝑥(𝑛𝑥+1)(𝑡)

)︂
and

𝑓(𝑥̄,𝑢,𝑡) :=
(︂
𝑓(𝑥,𝑢,𝑡)
𝑙(𝑥,𝑢,𝑡)

)︂
, 𝑐(𝑥̄(𝑡),𝑢(𝑡),𝑡) := 𝑐(𝑥(𝑡),𝑢(𝑡),𝑡), (4.10)

𝜓𝑠(𝑥̄) :=
(︂

𝜓𝑠

𝑥(𝑛𝑥+1)(𝑡𝑠)

)︂
, 𝜓𝑓 (𝑥̄(𝑡𝑓 )) := 𝜓𝑓 (𝑥(𝑡𝑓 )) (4.11)

the equivalent Mayer problem is obtained.

min
𝑥̄,𝑢,𝑡𝑓

𝐽(𝑥̄(𝑡𝑓 ),𝑡𝑓 ) = 𝑚(𝑥(𝑡𝑓 ),𝑡𝑓 ) + 𝑥(𝑛𝑥+1)(𝑡𝑓 ) (4.12a)

s.t. ˙̄𝑥 = 𝑓(𝑥̄(𝑡),𝑢(𝑡),𝑡) (4.12b)
𝜓𝑠(𝑥̄(𝑡𝑠)) = 0 (4.12c)
𝜓𝑓 (𝑥̄(𝑡𝑓 )) = 0 (4.12d)

𝑐(𝑥̄(𝑡),𝑢(𝑡),𝑡) ≤ 0 (4.12e)

Lagrange Transformation

A Mayer problem can be transformed into a Lagrange problem by extension of the domain
of 𝑚(𝑥(𝑡𝑓 ),𝑡𝑓 ). Define a continuously differentiable function

𝑚̄(𝑥(𝑡),𝑡𝑓 ) :=
ˆ 𝑡𝑓

𝑡𝑠

∂𝑚

∂𝑡
+ ∂𝑚

∂𝑥
𝑓(𝑥,𝑢,𝑡) d𝑡, 𝑚̄(𝑥(𝑡𝑠),𝑡𝑠) = 0. (4.13)

The extended function 𝑚̄ is likely only defined at points (𝑥,𝑡) where the process can termi-
nate. The cost functional of the equivalent Lagrange problem is then

𝐽(𝑥(𝑡),𝑢(𝑡),𝑡) = 𝑚̄(𝑥(𝑡),𝑡𝑓 ). (4.14)
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Fixed Final Time Transformation

A process with free final time can be transformed in a process with fixed final time by
definition of a new normalized time variable 𝜏 ∈ [0,1]:

𝜏 := 𝑡− 𝑡𝑠

𝑡𝑓 − 𝑡𝑠

, 𝑡 ∈ [𝑡𝑠; 𝑡𝑓 ] (4.15)

The state and control w.r.t. the transformed time are

𝑥̃(𝜏) := 𝑥(𝑡𝑠 + (𝑡𝑓 − 𝑡𝑠)𝜏) = 𝑥(𝑡), 𝑢̃(𝜏) := 𝑢(𝑡𝑠 + (𝑡𝑓 − 𝑡𝑠)𝜏) = 𝑢(𝑡) (4.16)

which leads to a transformed dynamic system

d𝑥̃
d𝜏 = 𝑑𝑥

d𝑡
d𝑡
d𝜏 = (𝑡𝑓 − 𝑡𝑠) 𝑓(𝑥̃(𝜏),𝑢̃(𝜏),(𝑡𝑓 − 𝑡𝑠)𝜏) (4.17)

and a transformed cost functional

𝐽(𝑥̃,𝑢̃,𝜏) = 𝑚(𝑥̃(1),1) +
ˆ 1

0
(𝑡𝑓 − 𝑡𝑠) 𝑙(𝑥̃(𝜏),𝑢̃(𝜏),(𝑡𝑓 − 𝑡𝑠)𝜏) d𝜏. (4.18)

Defining the extended state vector 𝑥̄(𝜏) :=
(︂
𝑥̃(𝜏)
𝑡𝑓 − 𝑡𝑠

)︂
, the control 𝑢̄(𝜏) := 𝑢̃(𝜏), the func-

tions

𝑚̄(𝑥̄(1),1) := 𝑚(𝑥̃(1),1) (4.19)
𝑙̄(𝑥̄(𝜏),𝑢̄(𝜏),𝜏) := (𝑡𝑓 − 𝑡𝑠) 𝑙(𝑥̃(𝜏),𝑢̃(𝜏),(𝑡𝑓 − 𝑡𝑠)𝜏) (4.20)
𝑐(𝑥̄(𝜏),𝑢̄(𝜏),𝜏) := 𝑐(𝑥̃(𝜏),𝑢̃(𝜏),(𝑡𝑓 − 𝑡𝑠)𝜏) (4.21)

and the dynamics

𝑓(𝑥̄(𝜏),𝑢̄(𝜏),𝜏) :=
(︂

(𝑡𝑓 − 𝑡𝑠) 𝑓(𝑥̃(𝜏),𝑢̃(𝜏),(𝑡𝑓 − 𝑡𝑠)𝜏)
0

)︂
,

𝜓𝑠(𝑥̄(0)) := 𝜓𝑠(𝑥̃(0)),
𝜓𝑓 (𝑥̄(1)) := 𝜓𝑓 (𝑥̃(1)), (4.22)

yields an equivalent OCP with fixed final time 𝑡𝑓 = 1.

min
𝑢̄

𝐽(𝑥̄(𝜏),𝑢̄(𝜏)) = 𝑚̄(𝑥̄(1),1) +
ˆ 1

0
𝑙̄(𝑥̄,𝑢̄,𝜏) d𝜏 (4.23a)

s.t. d𝑥̄(𝜏)
d𝜏 = 𝑓(𝑥̄(𝜏),𝑢̄(𝜏),𝜏) (4.23b)

𝜓𝑠(𝑥̄(0)) = 𝜓𝑠(𝑥̃(0)) (4.23c)
𝜓𝑓 (𝑥̄(1)) = 𝜓𝑓 (𝑥̃(1)) (4.23d)

𝑐(𝑥̄(𝜏),𝑢̄(𝜏),𝜏) ≤ 0 (4.23e)
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Autonomy Transformation

A non-autonomous problem can be transformed into an autonomous problem by defining
the extended state vector 𝑥̄(𝑡) :=

(︂
𝑥(𝑡)
𝑡

)︂
and the functions

𝑓(𝑥̄,𝑢) :=
(︂
𝑓(𝑥,𝑢,𝑥̄(𝑛𝑥+1))

1

)︂
, 𝑚̄(𝑥̄,𝑡𝑓 ) := 𝑚(𝑥,𝑡𝑓 ), (4.24)

𝜓0(𝑥̄) :=
(︂
𝜓(𝑥)0

𝑡𝑠

)︂
, 𝑙̄(𝑥̄,𝑢) := 𝑙(𝑥,𝑢,𝑥̄(𝑛𝑥+1)), (4.25)

𝜓1(𝑥̄) :=
(︂
𝜓(𝑥)1

𝑥̄(𝑛𝑥+1)

)︂
, 𝑐(𝑥̄,𝑢) := 𝑐(𝑥,𝑢,𝑥̄(𝑛𝑥+1)). (4.26)

The autonomous problem formulaton is obtained by replacing the corresponding functions
in OCP(4.7).

4.1.3 Dynamic Programming in Continuous Time

The core idea of dynamic programming (DP) is that optimization can often be thought of
as optimization in stages, based on a separable cost functional. The choice at any stage is a
trade-off between being greedy, i.e. minimizing the cost at the current stage, and foreseeing
the consequences of a greedy choice for the costs incurred at future stages. The optimal
strategy minimizes the sum of the cost at the current stage plus the minimum of costs
which occur at subsequent stages. Dynamic Programming was conceived in the 1940ties. A
central figure in its development was Richard Bellman.
It was found that the idea of DP is not limited to discrete decision processes but that it
can also be applied to optimal control problems based on ordinary differential equations.
This leads to the Hamilton-Jacobi-Bellman (HJB) nonlinear partial differential equation
(PDE). Although the guidance law developed within this thesis is not derived using the
HJB equation, Dynamic Programming is an insightful approach to closed loop optimal
control. In this frame we illustrate the dependency of the closed loop optimal control
on the initial condition, and the relationship between neighboring initial conditions on an
optimal trajectory. Finally we arrive at the definition of an optimal feedback law, which is
the central point of interest for the following chapters.
One way to derive the HJB equation is to investigate the cost functional with respect to its
explicit dependence on the initial condition. The cost incurred from a from a specific initial
condition (𝑡𝑠,𝑥𝑠) to an admissible target is called the cost-to-go. Naturally one is interested
in the optimal cost-to-go. But instead of minimizing the cost functional for a single initial
condition, DP considers a family of problems for all initial conditions 𝑥𝑠(𝑡𝑠) ∈ R𝑛𝑥 , 𝑡𝑠 ∈
[𝑡𝑠,𝑡𝑓 ]:

inf
𝑢
𝐽(𝑡𝑠,𝑥𝑠,𝑥,𝑢,𝑡) = 𝑚(𝑥(𝑡𝑓 )) +

ˆ 𝑡𝑓

𝑡𝑠

𝑙(𝑢(𝑡),𝑥(𝑡),𝑡) d𝑡 (4.27)

DP derives the dynamic relationship between problems with neighboring initial conditions
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which in some cases ultimately allows to solve all of them1. The dynamic relationship
between problems of neighboring initial conditions is the so called Principle of Optimality
(PoO).

Theorem 4.28 (Principle of Optimality)
Let ⋆

𝑢 : [𝑡𝑠,𝑡𝑓 ]→ R𝑛𝑢 be an optimal control with corresponding optimal trajectory ⋆
𝑥 : [𝑡𝑠,𝑡𝑓 ]→

R𝑛𝑥 for OCP(4.7). Then for any 𝑡1 ∈ [𝑡𝑠,𝑡𝑓 ] the restriction of the optimal control to [𝑡1,𝑡𝑓 ],
⋆
𝑢|[𝑡1,𝑡𝑓 ], is optimal for min𝑢 𝐽(𝑡1,

⋆
𝑥(𝑡1),𝑥,𝑢,𝑡) and the corresponding optimal trajectory is

⋆
𝑥|[𝑡1,𝑡𝑓 ].

Proof: The cost functional can be written as

𝐽(𝑡𝑠,𝑥𝑠,𝑢) =
ˆ 𝑡1

𝑡𝑠

𝑙(𝑢(𝜏),𝑥(𝜏),𝜏) d𝜏 + 𝐽(𝑡1,
⋆
𝑥(𝑡1), ⋆

𝑢|[𝑡1,𝑡𝑓 ]) (4.29a)

Assume that ⋆
𝑢|[𝑡1,𝑡𝑓 ] is not optimal over the interval [𝑡1,𝑡𝑓 ] when the initial point is 𝑥(𝑡1) =

⋆
𝑥(𝑡1). Then there would exist an admissible control function 𝑢̄(𝑡) defined on [𝑡1,𝑡𝑓 ] such
that

𝐽(𝑡1,
⋆
𝑥(𝑡1),𝑢̄) < 𝐽(𝑡1,

⋆
𝑥(𝑡1), ⋆

𝑢|[𝑡1,𝑡𝑓 ]). (4.29b)

But then the admissible control

𝑢(𝑡) =
{︃

⋆
𝑢(𝑡) 𝑡 ∈ [𝑡𝑠,𝑡1)
𝑢̄(𝑡) 𝑡 ∈ [𝑡1,𝑡𝑓 ]

(4.29c)

has the cost

𝐽(𝑡𝑠,𝑥𝑠,𝑢) =
ˆ 𝑡1

𝑡𝑠

𝑙( ⋆
𝑢(𝜏), ⋆

𝑥(𝜏),𝜏) d𝜏 + 𝐽(𝑡1,
⋆
𝑥(𝑡1),𝑢̄) (4.29d)

<

ˆ 𝑡1

𝑡𝑠

𝑙( ⋆
𝑢(𝜏), ⋆

𝑥(𝜏),𝜏) d𝜏 + 𝐽(𝑡1,
⋆
𝑥(𝑡1), ⋆

𝑢|[𝑡1,𝑡𝑓 ]) =
⋆

𝐽(𝑡𝑠,𝑥𝑠,
⋆
𝑢) (4.29e)

which is a contradiction to the optimality of ⋆
𝑢. Hence ⋆

𝑢|[𝑡1,𝑡𝑓 ] must be optimal for [𝑡1,𝑡𝑓 ],
yielding the feasible optimal trajectory ⋆

𝑥|[𝑡1,𝑡𝑓 ].

Written in infinitesimal form the PoO leads to the Hamilton-Jacobi-Bellman PDE. To derive
the HJB equation we formulate the optimal cost-to-go as the value function:

𝑉 (𝑡𝑠,𝑥𝑠) = inf
𝑢
𝐽(𝑡𝑠,𝑥𝑠,𝑥,𝑢,𝑡) (4.30)

The value function is scalar and returns the optimal cost for all possible initial conditions.
The PoO holds for all problems with separable cost, notwithstanding problems with control
or state constraints. But in case of active inequality constraints the value function is usu-
ally not differentiable which is problematic for mathematical treatment. For the following
derivation of the HJB equation we thus assume that 𝑉 is continuously differentiable with
respect to both arguments.

1 Note that in case of terminally and/or path- constraint problems an admissible optimal control might
not exist, hence the infimum is used instead of a minimum.
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According to the PoO for 𝛥𝑡 > 0:

𝑉 (𝑡𝑠,𝑥𝑠) = inf
𝑢[𝑡,𝑡+𝛥𝑡]

{︂ˆ 𝑡+𝛥𝑡

𝑡

𝑙(𝑥(𝜏),𝑢(𝜏),𝜏)d𝜏 + 𝑉 (𝑡+𝛥𝑡,𝑥 (𝑡+𝛥𝑡,𝑢[𝑡,𝑡+𝛥𝑡]))
}︂

(4.31)

For small 𝛥𝑡 the integral term in (4.31) can be approximated assuming the quantity
𝑙(𝑥(𝜏),𝑢(𝜏),𝜏) is constant over the interval.

ˆ 𝑡+𝛥𝑡

𝑡

𝑙(𝑥(𝜏),𝑢(𝜏),𝜏)d𝜏 ≈ 𝑙(𝑥(𝑡),𝑢(𝑡),𝑡)𝛥𝑡 (4.32)

Small changes 𝛥𝑡,𝛥𝑥 in the initial conditions of the value function can be approximated
using a Taylor expansion. We note the Taylor expansion of first order and abbreviate higher
order terms (HOT):

𝑉 (𝑡𝑠 +𝛥𝑡,𝑥𝑠 +𝛥𝑥) = 𝑉 (𝑡𝑠,𝑥𝑠) + 𝑉̇ (𝑡𝑠,𝑥𝑠)𝛥𝑡+ ⟨∇𝑥𝑠
𝑉 (𝑡𝑠,𝑥𝑠),𝛥𝑥⟩+ HOT (4.33)

where 𝑉̇ is the time derivative, ∇𝑥𝑠
𝑉 is the gradient w.r.t. 𝑥𝑠 and ⟨·,·⟩ is the scalar product.

Combining (4.32) and (4.33) with the PoO (4.31) and canceling 𝑉 (𝑡𝑠,𝑥𝑠) on both sides
yields

0 ≈ inf
𝑢[𝑡,𝑡+𝛥𝑡]

{︀
𝑙(𝑥(𝑡),𝑢(𝑡),𝑡)𝛥𝑡 + 𝑉̇ (𝑡𝑠,𝑥𝑠)𝛥𝑡+ ⟨∇𝑥𝑠

𝑉 (𝑡𝑠,𝑥𝑠),𝛥𝑥⟩+ HOT
}︀
. (4.34)

Divide by 𝛥𝑡

0 ≈ inf
𝑢[𝑡,𝑡+𝛥𝑡]

{︂
𝑙(𝑥(𝑡),𝑢(𝑡),𝑡) + 𝑉̇ (𝑡𝑠,𝑥𝑠) +

⟨
∇𝑥𝑠

𝑉 (𝑡𝑠,𝑥𝑠),
𝛥𝑥

𝛥𝑡

⟩
+ HOT

}︂
(4.35)

and take the limits 𝛥𝑡 → 0, 𝛥𝑥 → 0. The higher order terms go to zero, 𝑉̇ (𝑡𝑠,𝑥𝑠) is
independent of 𝑢 and can hence be pulled out of the infimum, then one obtains the HJB
partial differential equation

− 𝑉̇ (𝑡𝑠,𝑥𝑠) = inf
𝑢
{𝑙(𝑥(𝑡),𝑢(𝑡),𝑡) + ⟨∇𝑥𝑠

𝑉 (𝑡𝑠,𝑥𝑠),𝑓(𝑥(𝑡),𝑢(𝑡),𝑡)⟩} (4.36)

If the dynamics and the Lagrange term are time invariant and the final time is free the
value function 𝑉 (𝑥𝑠) only depends on the inital state and the HJB simplifies.

0 = inf
𝑢
{𝑙(𝑥(𝑡),𝑢(𝑡)) + ⟨∇𝑥𝑠

𝑉 (𝑥𝑠),𝑓(𝑥(𝑡),𝑢(𝑡))⟩} (4.37)

Note that this is still a PDE unless dim(𝑥) = 1 for which it becomes an ODE.
The HJB equation (4.36) defines an optimal control problem in feedback or closed loop
form through a backward recursion in time in which the last decision is made first. This
is in contrast to an open loop formulation where ⋆

𝑢(𝑡) is determined for all 𝑡 ∈ [𝑡𝑠,𝑡𝑓 ] at
𝑡𝑠. If 𝑉 (𝑡𝑠,𝑥𝑠) has continuous partial derivatives then 𝑉 (𝑡𝑠,𝑥𝑠) is a solution of the HJB
equation and it can be shown that the minimization of 𝑉 (𝑡𝑠,𝑥𝑠) by a control ⋆

𝑢(𝑡) is a
sufficient condition for optimality. For a comprehensive discussion of this object we refer to
Bertsekas [Ber07] and Sontag [Son98].
In DP the instantaneous optimal control is perceived as a function of the instantaneous
time and state. This is a powerful approach in cases where the optimization problem in
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(4.36) has an obtainable unique solution as a function of the instantaneous data (𝑡𝑠,𝑥𝑠). The
knowledge of 𝑉 (𝑡𝑠,𝑥𝑠) then enables an optimal global feedback law.

Definition 4.38 (Feedback Law)
A continuous function 𝛩 : 𝐼 × X → U, 𝐼 = [𝑡𝑠,𝑡𝑓 ] is called an admissible feedback law on 𝐼
if for all 𝑡0 ∈ 𝐼 and 𝑥0 ∈ X ⊆ R𝑛𝑥 there exists a unique trajectory 𝑥(𝑢(𝑡),𝑡) on [𝑡0,𝑡𝑓 ] with

𝑥(𝑡0) = 𝑥0, (4.38a)
𝑢(𝑡) = 𝛩(𝑡,𝑥), for all 𝑡 ∈ [𝑡0,𝑡𝑓 ]. (4.38b)

In that case 𝑢 is called the closed loop control starting at (𝑡0,𝑥0). An admissible feedback law
is called optimal if 𝑢(𝑡) = 𝛩(𝑡,𝑥) is a solution to (4.36).

If 𝑉 (𝑡𝑠,𝑥𝑠) would be known then the optimal feedback control is the point wise solution of
⋆
𝑢(𝑡) = arg min

𝑢
{𝑙(𝑥(𝑡),𝑢(𝑡),𝑡) + ⟨∇𝑥𝑠

𝑉 (𝑡𝑠,𝑥𝑠),𝑓(𝑥(𝑡),𝑢(𝑡),𝑡)⟩} (4.39)

A well known example for optimal feedback is the linear quadratic regulator (LQR) for
unconstrained, linear, time invariant systems with quadratic cost.
However for more complex problems no closed form solution of the HJB equation is known.
Obtaining the value function analytically is exceptionally difficult and a numerical approach
requires a discretization of the state space which is infeasible for almost all practically rel-
evant problems, due to the curse of dimensionality. Furthermore the approach via the
HJB equation is based on the assumption that the value function is continuously differen-
tiable, which does not necessarily hold, even for simple problems, as demonstrated by Vinter
[Vin10]. There have been efforts to extend the theory of DP using notions from nonsmooth
analysis, so called viscosity solutions, this is for example discussed in Bressan [Bre07].
Finding the optimal closed loop feedback control (4.39) for more complex systems than the
LQR case thus requires the solution of an optimal control problem at every time instant.

4.1.4 Optimal Control
Optimal control has a rich history dating back to 1697 when Bernoulli published the solution
to his brachystochrone problem1. A major achievement was the publication of Pontryagin’s
Minimum (Maximum) Principle (PMP) in 1962 which was conceived in competition with
Bellman’s Principle of Optimality during the Cold War era2. The major evolution of PMP
from the calculus of variations is the distinction of control and state variables and the new
possibility to consider control constraints. The naming ambiguity results from whether the
optimization is a minimization or maximization problem and the related sign convention
for the Hamilton function.
Previously we pointed out that for most problems it is exceptionally hard if not impossible,
to solve the HJB equation and to find the closed loop optimal control. Sometimes however

1 Sussmann, Hector J. et al.: 300 Years Of Optimal Control: From The Brachystochrone To The
Maximum Principle. 1997

2 Pesch, Hans Josef et al.: ‘The Cold War and the Maximum Principle of Optimal Control’. Documenta
Mathematica (2012), vol.: pp. 331–344
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it is not necessary to know ∇𝑥𝑠
𝑉 (𝑥𝑠) at all values 𝑥𝑠 ∈ R𝑛𝑥 , but only for a single fixed

initial point 𝑥̄𝑠. Then it is sufficient to know ∇𝑥𝑠
𝑉 at only one value of 𝑥 for each t, that

is ∇𝑥𝑠
𝑉 ( ⋆
𝑥(𝑡)) with ⋆

𝑥(𝑡𝑠) = 𝑥̄𝑠. This is the core idea of the Minimum Principle (MP).
The MP provides a strategy to actually obtaining the optimal solution for a single initial
condition. Yet the guidance law developed in this thesis is not derived from the MP directly.
However understanding the connection between the optimality conditions for a single initial
condition (MP), and the optimality conditions for the closed loop solution (HJB equation)
is fundamental for closed loop optimal control.
We want to illustrating a general idea rather than the details of the method, thus we consider
the MP without state constraints and with free final time as stated by Athans [Ath06].

Theorem 4.40 (Minimum Principle (autonomous system, free time))
Given the problem

min
𝑢

𝐽(𝑢) =
ˆ 𝑡𝑓

𝑡𝑠

𝑙(𝑢(𝑡),𝑥(𝑡)) d𝑡 (4.40a)

s.t. 𝑥̇ = 𝑓(𝑥,𝑢)
𝑥(𝑡𝑠) = 𝑥𝑠

𝑥(𝑡𝑓 ) ∈ S𝑓 ⊆ R𝑛𝑥

𝑢 ∈ U ⊆ R𝑛𝑢

where 𝑙 is continuous and 𝑓 is continuously differentiable in 𝑥. The target set S𝑓 is a
smooth k-manifold in R𝑛𝑥 . Let ⋆

𝑢(𝑡) be an admissible control which transfers 𝑥𝑠 to ⋆
𝑥(

⋆

𝑡𝑓 ) ∈ S𝑓

at free final time
⋆

𝑡𝑓 . Let ⋆
𝑥(𝑡) be the corresponding state trajectory. In order for ⋆

𝑢(𝑡) to be
optimal it is necessary that there exists a function ⋆

𝜇(𝑡) and a constant ⋆
𝜇abn ≤ 0, satisfying

( ⋆
𝜇(𝑡), ⋆

𝜇abn) ̸= (0,0), 𝑡 ∈ [𝑡𝑠,
⋆

𝑡𝑓 ] such that
1. ⋆

𝑢(𝑡) and ⋆
𝜇(𝑡) satisfy the canonical equations

⋆

𝑥̇(𝑡) = ∂𝐻

∂𝜇
( ⋆
𝑥,

⋆
𝑢,

⋆
𝜇,

⋆
𝜇abn) state equation

⋆

𝜇̇(𝑡) = −∂𝐻
∂𝑥

( ⋆
𝑥,

⋆
𝑢,

⋆
𝜇,

⋆
𝜇abn) adjoint equation

with the boundary conditions ⋆
𝑥(𝑡𝑠) = 𝑥𝑠, ⋆

𝑥(
⋆

𝑡𝑓 ) ∈ S𝑓 where the Hamiltonian function
𝐻 is defined as

𝐻(𝑥,𝑢,𝜇,𝜇abn) := ⟨𝜇,𝑓(𝑥,𝑢)⟩+ 𝜇abn𝑙(𝑥,𝑢), for all 𝑢 ∈ U and for all 𝑡 ∈ [𝑡𝑠,
⋆

𝑡𝑓 ].

2. The control ⋆
𝑢(𝑡) is a global minimum of 𝐻( ⋆

𝑥(𝑡), · , ⋆
𝜇(𝑡), ⋆

𝜇abn).

𝐻( ⋆
𝑥(𝑡), ⋆

𝑢(𝑡), ⋆
𝜇(𝑡), ⋆

𝜇abn) ≤ 𝐻( ⋆
𝑥(𝑡),𝑢, ⋆

𝜇(𝑡), ⋆
𝜇abn), for all 𝑢 ∈ U and for all 𝑡 ∈ [𝑡𝑠,

⋆

𝑡𝑓 ].

3. The Hamiltonian is equivalent zero along the optimal path.

𝐻( ⋆
𝑥(𝑡), ⋆

𝑢(𝑡), ⋆
𝜇(𝑡), ⋆

𝜇abn) ≡ 0, for all 𝑡 ∈ [𝑡𝑠,
⋆

𝑡𝑓 ].

4. If the final state ⋆
𝑥(

⋆

𝑡𝑓 ) is not restricted to a fixed endpoint 𝑥𝑓 but is optimized in a
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target set S𝑓 then the vector ⋆
𝜇(

⋆

𝑡𝑓 ) is normal (transversal) to S𝑓 at ⋆
𝑥(

⋆

𝑡𝑓 ).

Remark 4.41 (Boundary Conditions)
Concerning (4.40.4): The canonical system consists of 2𝑛𝑥 ODEs and 2𝑛𝑥 boundary con-
ditions defined by ⋆

𝑥(𝑡𝑠) = 𝑥𝑠 and ⋆
𝑥(

⋆

𝑡𝑓 ) = 𝑥𝑓 . This situation changes when considering
a variable endpoint. For ⋆

𝑥(
⋆

𝑡𝑓 ) ∈ S𝑓 , with S𝑓 being a k-dimensional surface, conditions
(4.40.1-3) hold as for a fixed endpoint. But for the 𝑛𝑥−𝑘 free dimensions the final boundary
conditions are replaced by the so called transversality condition

⟨ ⋆
𝜇(

⋆

𝑡𝑓 ), 𝑑⟩ = 0 (4.42)

for 𝑑 ∈ 𝑇⋆
𝑥(

⋆
𝑡𝑓 )S𝑓 which is the tangent space to S𝑓 at ⋆

𝑥(
⋆

𝑡𝑓 ). Note that if S𝑓 = R𝑛𝑥 then it can
be shown that ⋆

𝜇(
⋆

𝑡𝑓 ) = 0, whereas when S𝑓 = {𝑥𝑓} then ⋆
𝜇(

⋆

𝑡𝑓 ) is free.

Remark 4.43 (Abnormal Case)
In well posed problems it holds that ⋆

𝜇abn > 0 [Ath06](Chapter 5.13). Then the vector (𝜇abn,𝜇)
can be normalized to (1, 𝜇

𝜇abn
) while theorem (4.40) holds. Hence it is implicitly assumed that

⋆
𝜇abn = 1. The case ⋆

𝜇abn = 0 is called abnormal and is not considered.

The MP yields a system of highly nonlinear ODEs for the optimal trajectory and the
corresponding adjoint vector which must be solved with appropriate boundary conditions.
A general approach to solve an OCP using the MP is described in [Bre07](Chapter 6.2):

1. The Hamilton function 𝐻(𝑥,𝑢,𝜇) is determined.
2. The minimization problem ⋆

𝑢(𝑡) = arg min𝑢∈U𝐻(𝑥,𝑢,𝜇) is solved and the optimal
control is expressed as a function of the state and the adjoint 𝑢 = 𝜅(𝑥,𝜇). This
requires determining the general structure of the control function and its switching
points. If the dynamics 𝑓(𝑥,𝑢) or the Lagrange term 𝑙(𝑥,𝑢) depend nonlinear on 𝑢
this can be a difficult task which can require a numerical approximation of 𝜅(𝑥,𝜇).

3. The control 𝑢 is eliminated in the canonical equations by substituting 𝜅(𝑥,𝜇). This
leads to the boundary value problem

𝑥̇ = 𝑓(𝑥,𝜅(𝑥,𝜇)) (4.44a)
𝜇̇ = −∇𝑥𝐻(𝑥,𝜅(𝑥,𝜇),𝜇) (4.44b)

The boundary conditions are identical to the boundary conditions of the canonical sys-
tem (4.41). Depending on the terminal conditions and/or a fixed final time transver-
sality conditions may apply. The boundary value problem (4.44) is solved numerically
for ⋆

𝑥(𝑡), ⋆
𝜇(𝑡).

4. The optimal control can then be computed as ⋆
𝑢(𝑡) = 𝜅( ⋆

𝑥(𝑡), ⋆
𝜇(𝑡)).

The MP is a necessary condition for optimality, hence a solution of the canonical system does
not imply optimality. Second order sufficient conditions are required to verify an optimal
solution. In practice though it is often assumed that the canonical system has a unique
solution, which must hence be optimal, such that the evaluation of second order conditions
is not required. For a comprehensive discussion, the inclusion of state constraints and proofs
of the MP we refer to Athans [Ath06] and Bressan [Bre07].
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4.1.5 The Connection between DP and PMP
The HJB equation and the boundary conditions for OCP(4.41) are

0 = inf
𝑢
{𝑙(𝑥,𝑢) + ⟨∇𝑥𝑠

𝑉 (𝑥𝑠),𝑓(𝑥,𝑢)⟩} , (4.45)
𝑉 (𝑥(𝑡𝑓 )) = 0,

𝑥(𝑡𝑓 ) ∈ S𝑓 .

Because OCP(4.41) is autonomous the optimal closed loop control is according to (4.39)
⋆
𝑢HJB(𝑡; 𝑥𝑠) = arg min

𝑢
{𝑙(𝑥,𝑢) + ⟨∇𝑥𝑠

𝑉 (𝑥𝑠),𝑓(𝑥,𝑢)⟩} , 𝑥𝑠 ∈ R𝑛𝑥 (4.46)

To find the optimal control for a single fixed initial point 𝑥̄𝑠 it is not necessary to know
∇𝑥𝑠

𝑉 (𝑥𝑠) at all values 𝑥𝑠 ∈ R𝑛𝑥 . It is sufficient to know ∇𝑥𝑠
𝑉 at only one value of 𝑥 for

each t, that is ∇𝑥𝑠
𝑉 ( ⋆
𝑥(𝑡)) with ⋆

𝑥(𝑡𝑠) = 𝑥̄𝑠.
The MP provides a strategy to actually obtaining ∇𝑥𝑠

𝑉 ( ⋆
𝑥(𝑡)) by formulating the necessary

conditions that a triple { ⋆
𝑢,

⋆
𝑥, ∇𝑥𝑠

𝑉 ( ⋆
𝑥)} must fulfill along an optimal trajectory. By re-

striction to a single initial condition the HJB equation can be converted into an ordinary
differential equation by substituting

⋆
𝜇(𝑡) = ∇𝑥𝑠

𝑉 ( ⋆
𝑥(𝑡)) (4.47)

into (4.45) which now only depends on time. This leads to the minimization of the Hamil-
tonian and to condition (4.41) of the MP

0 = min
𝑢
{𝑙(𝑥,𝑢) + ⟨ ⋆

𝜇,𝑓(𝑥,𝑢)⟩} = min
𝑢
𝐻(𝑥,𝑢, ⋆

𝜇) = 𝐻( ⋆
𝑥,

⋆
𝑢MP,

⋆
𝜇) (4.48)

The open loop optimal control
⋆
𝑢MP(𝑡) = min

𝑢
𝐻(𝑥,𝑢, ⋆

𝜇) (4.49)

depends on the unknown initial adjoint state 𝜇𝑠 = ⋆
𝜇(𝑡𝑠) which is obtained by solving the

adjoint equation backwards in time through the canonical equation system (4.40.1). The
final condition for ⋆

𝜇(
⋆

𝑡𝑓 ) is given by the transversality condition (4.40.4). Note that the less
restricted the final state ⋆

𝑥(
⋆

𝑡𝑓 ) is, the more restricted is the adjoint state ⋆
𝜇(

⋆

𝑡𝑓 ). The adjoint
equation can be derived from the HJB equation under the assumption that 𝑉 (𝑡𝑠,𝑥𝑠) is two
times continuously differentiable:

⋆

𝜇̇(𝑡) = d∇𝑥𝑠
𝑉 ( ⋆
𝑥(𝑡))

d𝑡 =
⋆

𝑥̇ᵀ∇2
𝑥𝑠𝑥𝑠

𝑉 ( ⋆
𝑥) = 𝑓( ⋆

𝑥,
⋆
𝑢)ᵀ∇2

𝑥𝑠𝑥𝑠
𝑉 ( ⋆
𝑥) (4.50)

Differentiating (4.45) w.r.t. 𝑥 at the optimal solution yields

0 = 𝑙𝑥( ⋆
𝑥,

⋆
𝑢) + 𝑓( ⋆

𝑥,
⋆
𝑢)ᵀ∇2

𝑥𝑠𝑥𝑠
𝑉 ( ⋆
𝑥) +∇𝑥𝑠

𝑉 ( ⋆
𝑥)𝑓𝑥( ⋆

𝑥,
⋆
𝑢) (4.51)

−∇𝑥𝐻( ⋆
𝑥,

⋆
𝑢,

⋆
𝜇) = 𝑓( ⋆

𝑥,
⋆
𝑢)ᵀ∇2

𝑥𝑠𝑥𝑠
𝑉 ( ⋆
𝑥)

which combined with (4.50) results into the adjoint equation. The state equation in (4.40.1)
is a restatement of the relation between the adjoint- and the state variables in the Hamil-
ton function which can be easily verified. For checking the boundary and transversality
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conditions we refer to Bertsekas [Ber07] and Bressan [Bre07].
The conclusion is that for problems with a two times continuously differentiable value func-
tion the minimum principle can be derived from the HJB equation. The central piece of
this connection is that the adjoint variables are the gradient of the value function along the
optimal trajectory.

4.2 Static Optimization
Static optimization refers to the minimization of a scalar objective function 𝑓 : R𝑛𝑧 → R
which depends upon a finite dimensional vector of optimization variables 𝑧 ∈ R𝑛𝑧 . The
optimization can be subject to a finite number of constraint functions 𝑔(𝑚) : R𝑛𝑧 → R,
1 ≤ 𝑚 ≤ 𝑛𝑔. We only consider functions 𝑓 and 𝑔 that are at least one time continuously
differentiable. The standard problem of continuous, nonlinear optimization is:

Problem 4.52 (Nonlinear Program)
Let the functions 𝑓 : R𝑛𝑧 → R and 𝑔 : R𝑛𝑧 → R𝑛𝑔 be continuously differentiable. The
problem

min
𝑧∈R𝑛𝑧

𝑓(𝑧) (4.52a)

s.t. 𝑔(𝑚)(𝑧) = 0 𝑚 = 1,..., 𝑛𝑒𝑞 (4.52b)
𝑔(𝑚)(𝑧) ≤ 0 𝑚 = 𝑛𝑒𝑞 + 1,...,𝑛𝑔 (4.52c)

is called standard nonlinear program (NLP).

In contrast to an OCP an NLP can be solved by a computer program, because it is finite
dimensional and thus suitable for numeric solution methods. In the following we introduce
the terminology that is required to characterize an NLP and it’s optimal solution.

Definition 4.53 (Feasibility)
A vector 𝑧 is said to be feasible for NLP(4.52) if 𝑧 satisfies the constraints (4.52b) and (4.52c).

Definition 4.54 (Active Constraint)
A constraint 𝑔(𝑚), 𝑚 = 1,...,𝑛𝑔 is called active at a feasible 𝑧 if 𝑔(𝑚)(𝑧) = 0.

Definition 4.55 (Sets of Active Indices)
The set of active indices is

𝑎(𝑧) := {𝑚 ∈ 1,...,𝑛𝑒𝑞} ∪ {𝑚 ∈ 𝑛𝑒𝑞 + 1,...,𝑛𝑔 | 𝑔(𝑚)(𝑧) = 0} (4.56)

Definition 4.57 (Set of Active Constraints)
The set of active constraints is

𝑔𝑎(𝑧) := {𝑔(𝑚)(𝑧), 𝑚 ∈ 𝑎(𝑧)}

Definition 4.58 (Regularity)
A feasible vector 𝑧 is called regular if the gradients ∇𝑔𝑎(𝑧) are linearly independent.

Definition 4.59 (Normality)
A feasible vector 𝑧 is called normal if the gradients ∇𝑔(𝑧) are linearly independent.
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Definition 4.60 (Minimum)
The function 𝑓 : 𝐷 → R with domain 𝐷 ⊂ R𝑛𝑧 is said to have a local minimum at ⋆

𝑧 ∈ 𝐷 if
𝜀 > 0 exists such that for all 𝑧 ∈ 𝐷 satisfying ‖𝑧 − ⋆

𝑧‖ < 0 it holds that

𝑓( ⋆
𝑧) ≤ 𝑓(𝑧).

where ‖·‖ is a norm on R𝑛𝑧 . The minimum is called strict if the inequality is strict for
𝑧 ̸= ⋆

𝑧. The minimum is called global if it holds for all 𝑧 ∈ 𝐷.

4.2.1 Local Optimality Conditions
In the following the necessary and sufficient conditions for a local optimum of NLPs is stated
according to Geiger and Kanzow [Gei02].

Definition 4.61 (Lagrange Function)
The function 𝐿 : R𝑛𝑧 × R𝑛𝑔 → R

𝐿(𝑧,𝜇) = 𝑓(𝑧) + 𝜇ᵀ𝑔(𝑧)

with multipliers 𝜇 ∈ R𝑛𝑔 is called Lagrange function of NLP(4.52) and the components of 𝜇
are called Lagrange multipliers.

Theorem 4.62 (First Order Necessary Conditions)
Let 𝑓, 𝑔 be continuously differentiable and let ⋆

𝑧 be regular. Then there exist unique Lagrange
multipliers ⋆

𝜇 such that

∇𝑧𝐿( ⋆
𝑧,

⋆
𝜇) = 0 Optimality (4.62a)

𝑔(𝑚)( ⋆
𝑧) = 0, 𝑚 = 1,...,𝑛𝑒𝑞, Primal Feasibility (EQ) (4.62b)

𝑔(𝑚)( ⋆
𝑧) ≤ 0, 𝑚 = 𝑛𝑒𝑞 + 1,...,𝑛𝑔, Primal Feasibility (IEQ) (4.62c)

⋆
𝜇(𝑚) ≥ 0, 𝑚 = 𝑛𝑒𝑞 + 1,...,𝑛𝑔, Dual Feasibility (4.62d)

⋆
𝜇(𝑚)𝑔(𝑚)( ⋆

𝑧) = 0, 𝑚 = 𝑛𝑒𝑞 + 1,...,𝑛𝑔. Complementarity (4.62e)

These conditions are known as Karush-Kuhn-Tucker (KKT) conditions. A satisfying point
( ⋆
𝑧,

⋆
𝜇) is called KKT point. The KKT conditions can be written in compact matrix form

using the set of active indices:

𝐾( ⋆
𝑧,

⋆
𝜇𝑎) =

(︂
∇𝑧𝐿( ⋆

𝑧,
⋆
𝜇𝑎)

𝑔𝑎( ⋆
𝑧)

)︂
=

(︂
∇𝑧𝑓( ⋆

𝑧) + ⋆
𝜇ᵀ

𝑎∇𝑧𝑔𝑎( ⋆
𝑧)

𝑔𝑎( ⋆
𝑧)

)︂
= 0 (4.63)

Necessary and sufficient optimality conditions of second order are:

Theorem 4.64 (Second Order Necessary Conditions)
If the functions 𝑓, 𝑔 are twice continuously differentiable a necessary condition of second
order for a KKT point ( ⋆

𝑧,
⋆
𝜇) to be a local minimum is

𝑣ᵀ∇2
𝑧𝑧𝐿( ⋆

𝑧,
⋆
𝜇)𝑣 ≥ 0, 𝑣 ∈ R𝑛𝑧

∇2
𝑧𝑧𝐿( ⋆

𝑧,
⋆
𝜇) is the Hessian matrix of the Lagrange function.
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Theorem 4.65 (Second Order Sufficient Conditions)
If the functions 𝑓, 𝑔 are twice continuously differentiable a sufficient condition of second
order for a KKT-point ( ⋆

𝑧,
⋆
𝜇) to be a local minimum is

𝑣ᵀ∇2
𝑧𝑧𝐿( ⋆

𝑧,
⋆
𝜇)𝑣 > 0, 𝑣 ∈ R𝑛𝑧∖{0}

4.2.2 Solution of Nonlinear Programs with Sequential Quadratic Programming

An often used method for solving NLPs is sequential quadratic programming (SQP). In
sequential quadratic programming NLP(4.52) is locally approximated by a convex subproblem
which can be solved more easily and reliably. The solution of the subproblem is used as
search direction for the original problem. The convex subproblems are usually obtained by
a quadratic approximation of the Lagrange function and a linearization of the constraints
as examplary shown below.

Problem 4.66 (Linearly Constrained Quadratic Approximation Problem)

min
𝑑

1
2𝑑

[𝑘]ᵀ∇2
𝑧𝑧𝐿(𝑧[𝑘],𝜇[𝑘])𝑑[𝑘] +∇𝑧𝑓(𝑧[𝑘])ᵀ𝑑[𝑘] (4.66a)

s.t. 𝑔(𝑚)(𝑧[𝑘]) +∇𝑧𝑔
(𝑚)(𝑧[𝑘])ᵀ𝑑[𝑘] = 0 𝑚 = 1,...,𝑛𝑒𝑞 (4.66b)

𝑔(𝑚)(𝑧[𝑘]) +∇𝑧𝑔
(𝑚)(𝑧[𝑘])ᵀ𝑑[𝑘] ≤ 0 𝑚 = 𝑛𝑒𝑞 + 1,...,𝑛𝑔 (4.66c)

𝑘 is the iteration counter and 𝑑[𝑘] = 𝑧− 𝑧[𝑘] are the optimization variables. If (𝑧[𝑘],𝜇[𝑘]) is in
sufficiently close neighborhood to a KKT point of NLP(4.52) and all required functions are
sufficiently differentiable then problem (4.66) is a local quadratic approximation of NLP(4.52)

around (𝑧[𝑘],𝜇[𝑘]).
In each iteration problem (4.66) is solved using appropriate quadratic programming algo-
rithms, for example the interior point method. The optimal solution

⋆

𝑑[𝑘] is used as search
direction:

𝑧[𝑘+1] = 𝑧[𝑘] + 𝛼
⋆

𝑑[𝑘].

The step size 𝛼 ∈ R is determined using a line search method, like for example the Armijo-
rule. The solution

⋆

𝑑[𝑘] is a descent direction for 𝐿(𝑧[𝑘],𝜇[𝑘]) if the matrix 𝐻 [𝑘] = ∇2
𝑧𝑧𝐿(𝑧[𝑘],𝜇[𝑘])

is positive definite. In praxis 𝐻 [𝑘] is often approximated because the exact second derivative
evaluation is computationally very expensive.
The top level SQP algorithm can be summarized as follows:

1. Set 𝑘 := 0, choose 𝑧[𝑘] ∈ R𝑛𝑧 , 𝜇[𝑘] ∈ R𝑛𝑔 and 𝐻 [𝑘] ∈ R𝑛𝑧 × R𝑛𝑧 symmetric.
2. If (𝑧[𝑘],𝜇[𝑘]) is a KKT-point of NLP(4.52): stop.

3. Compute solution
⋆

𝑑[𝑘] of subproblem (4.66) and obtain the associated multipliers 𝜇[𝑘+1].
4. Determine the step size 𝛼
5. Update the estimate 𝑧[𝑘+1] = 𝑧[𝑘] + 𝛼

⋆

𝑑[𝑘], choose 𝐻 [𝑘+1] ∈ R𝑛𝑧 × R𝑛𝑧 symmetric, set
𝑘 := 𝑘 + 1 and go to 2.

More detailed information can for example be found in [Ber99] and [Gei02].
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4.2.3 Relationship Between the Lagrange Multipliers and the Optimal Value

In Section 4.1.5 we have seen that the adjoint variables are the gradient of the value function
on the optimal trajectory. In static optimization the Lagrange multipliers have a similar rela-
tionship with the optimal value. To make that relation obvious we consider an optimization
problem with a scalar equality constraint 𝑔(𝑧) : R𝑛𝑧 → R.

min
𝑧

𝑓(𝑧) (4.67a)
s.t. 𝑔(𝑧) = 0 (4.67b)

At a strict minimum ( ⋆
𝑧,

⋆
𝜇) it holds according to the KKT conditions that

∇𝑧𝐿( ⋆
𝑧,

⋆
𝜇) = ∇𝑧𝑓( ⋆

𝑧) +∇𝑧

⋆
𝜇𝑔( ⋆

𝑧) = 0. (4.68)

Consider a parametrization of the constraint using a parameter 𝑞 ∈ R. For a nominal value
𝑞 := 𝑞0 = 0 we obtain the original solution

⋆

𝑧(𝑞0).

𝑔(𝑧) = 𝑞0 =⇒ 𝑔( ⋆
𝑧(𝑞0),𝑞0) = 𝑔( ⋆

𝑧(𝑞0))− 𝑞0 = 0 (4.69)

If the solution of NLP(4.67) also exists in a neighborhood N around 𝑞0, then for 𝑞 ∈ N it
holds that

d𝑔
d𝑞 = ∂𝑔

∂𝑞
+∇𝑧𝑔( ⋆

𝑧(𝑞),𝑞)ᵀ d ⋆
𝑧

d𝑞 = 0. (4.70)

With ∂𝑔

∂𝑞
= −1 it follows that

∇𝑧𝑔( ⋆
𝑧(𝑞),𝑞)ᵀ d ⋆

𝑧

d𝑞 = 1. (4.71)

We can now obtain the directional total derivative of the objective function with respect to
the perturbation 𝑞, in a neighborhood around the nominal value 𝑞0:

d𝑓
d𝑞 (𝑞0) = ∇𝑧𝑓( ⋆

𝑧)ᵀ d𝑧
d𝑞 (𝑞0)

(4.68)= − ⋆
𝜇∇𝑧𝑔( ⋆

𝑧)ᵀ d𝑧
d𝑞 (𝑞0)

(4.71)= − ⋆
𝜇 (4.72)

Obviously the Lagrange multiplier is the total derivative (or sensitivity) of the objective
function w.r.t. a perturbation in the constraint function. If ⋆

𝜇 ≫ 0 it indicates that the
constraint has a strong negative impact on the objective function and that a relaxation of
the constraint could improve the optimal value. This result can be generalized to multiple
constraints as well as to active inequality constraints. This leads to parametric sensitivity
analysis, to which we come back in Chapter 5. .

4.3 Indirect and Direct Optimization Methods

In the previous sections we have illustrated the difference between the open and the closed
loop solution of an optimal control process and we have stated optimality conditions for
dynamic and static optimization problems. The closed loop solution of an optimal control
process requires the solution of the HJB PDE, which is seldom possible. The open loop
solution for each individual initial condition is the solution of an infinite dimensional op-
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timal control problem. There are two approaches to actually obtaining the solution of an
optimal control problem, which are both based on the discretization of the OCP into a finite
dimensional, static optimization problem:
The first approach uses the necessary optimality conditions of Pontryagin’s Minimum Prin-
ciple. The OCP is transformed into a boundary value problem by formulating the optimal
control as a function of the state and the adjoint state. The boundary value problem is
then discretized and transformed into a static optimization problem, which can be solved
numerically. Accordingly this approach is sometimes phrased as ’optimize then discretize’
[Bet10] and commonly referred to as indirect solution strategy.
The second approach discretizes the OCP directly, without evaluating the PMP optimality
conditions. This likewise results into a static optimization problem. The difference is
that this approach solely relies on the discrete optimality conditions (i.e. KKT) to solve
the underlying optimal control problem. This is commonly known as direct optimization
approach.
As far as a generalization is possible, direct optimization has the advantage of not requiring
detailed apriori knowledge of the control switching structure and the adjoint variables, thus
requiring a less accurate optimization start value. In turn indirect methods provide better
insight in the solution structure and may achieve a higher solution accuracy.
In the remainder of this thesis we solely focus on direct optimization.

4.4 Direct Transcription Using the Shooting Method
This section describes a direct optimization approach for solving an OCP using the multiple
shooting method [Boc84]. The OCP is discretized using a numeric integration method. The
control variables (and depending on the method also the state variables) at the discretization
points become the decision variables of a static optimization problem. The decision variables
and constraints are ordered, such that the discrete OCP can be written as an NLP. The NLP
is then solved using an appropriate numeric method, e.g. SQP. The process of transforming
an OCP into an NLP is commonly referred to as transcription.
In the following it is assumed (without loss of generality) that the OCP is in autonomous,
normalized form. If an OCP is not autonomous, it can be transformed into the autonomous
form as described in Section 4.1.2. The independent variable 𝑡 ∈ [𝑡𝑠,𝑡𝑓 ] of the autonomous
problem is then scaled to the normalized time 𝜏 ∈ [0,1] using the final time transformation
as in Section 4.1.2. The process runtime is specified using the variable 𝑡𝑑 = 𝑡𝑓 − 𝑡𝑠. If either
the initial time 𝑡𝑠 or the final time 𝑡𝑓 are free, the process duration 𝑡𝑑 is free. If 𝑡𝑠 and 𝑡𝑓

are fixed, 𝑡𝑑 is fixed. The standard OCP 4.7 can then be written as:

Problem 4.73 (Autonomous Normalized Optimal Control Problem)

min
𝑥,𝑢,𝑡𝑑

𝐽(𝑥(𝜏),𝑢(𝜏),𝑡𝑑) = 𝑚(𝑥(1),𝑡𝑑) + 𝑡𝑑

ˆ 1

0
𝑙(𝑥(𝜏),𝑢(𝜏)) d𝜏 (4.73a)

s.t. 𝑥̇ = 𝑡𝑑𝑓(𝑥(𝜏),𝑢(𝜏)) (4.73b)
𝜓𝑠(𝑥(0)) = 0 (4.73c)
𝜓𝑓 (𝑥(1)) = 0 (4.73d)

𝑐(𝑥(𝜏 ),𝑢(𝜏)) ≤ 0 (4.73e)
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4.4.1 Discretization

OCP(4.73) is discretized using a numerical integration scheme. In the following we exemplary
use the explicit Euler method. It is advantageous to base the numerical implementation on
the normalized formulation OCP(4.73), because this allows to use the same implementation
for solving fixed and free terminal time problems. For the discretization of the system
dynamics 𝑓(𝑥,𝑢) the control function 𝑢(𝜏) is thus discretized on a grid of the normalized
time 𝜏 ∈ [0; 1]. Select 𝑙𝑢 ≥ 2 support nodes 𝜏 (𝑖) ∈ [0; 1], 1 ≤ 𝑖 ≤ 𝑙𝑢 with

0 = 𝜏 (1) ≤ ... ≤ 𝜏 (𝑙𝑢) = 1. (4.74)

This defines the integration step sizes

ℎ(𝑖) = 𝜏 (𝑖+1) − 𝜏 (𝑖), 𝑖 ∈ [1, ..., 𝑙𝑢 − 1] (4.75)

and the control grid

𝑇𝑢 :=
{︀
𝜏 (1), ..., 𝜏 (𝑙𝑢)

}︀
. (4.76)

The choice of the integration step sizes and the integration method has a strong impact on
the size of the resulting NLP and the accuracy of the obtained solution.
We denote 𝑢(𝑖) = 𝑢(𝜏 (𝑖)) as an approximation of the control vector at normalized time
𝜏 (𝑖) ∈ 𝑇𝑢. Numerically integrating the dynamics from the initial state 𝑥(0) using the controls
𝑢(1), ..., 𝑢(𝑙𝑢−1) yields the integrated state trajectory 𝑥(2), ..., 𝑥(𝑙𝑢) with respect to normalized
time. Relation (4.16) can be used to obtain an approximation of the trajectory with respect
to the original time.
The objective function is approximated with the trapezoidal rule. Finally OCP(4.73) can be
written in discretized form:

Problem 4.77 (Discretized Optimal Control Problem (Euler, Trapezoidal Quadrature))

min
𝑥,𝑢,𝑡𝑑

𝑓(𝑥,𝑢,𝑡𝑑) = 𝑚(𝑥(1),𝑡𝑑) + 𝑡𝑑

2

𝑙𝑢−1∑︁
𝑖=1

ℎ(𝑖)
[︀
𝑙(𝑥(𝑖),𝑢(𝑖)) + 𝑙(𝑥(𝑖+1),𝑢(𝑖+1))

]︀
(4.77a)

s.t. 𝑥(𝑖+1) = 𝑥(𝑖) + ℎ(𝑖)𝑡𝑑𝑓(𝑥(𝑖),𝑢(𝑖)), 𝑖 ∈ [1, ..., 𝑙𝑢 − 1] (4.77b)
𝜓𝑠(𝑥(0)) = 0 (4.77c)
𝜓𝑓 (𝑥(1)) = 0 (4.77d)
𝑐(𝑥(𝑖),𝑢(𝑖)) ≤ 0, 𝑖 ∈ [1, ..., 𝑙𝑢]. (4.77e)

Single Shooting

The idea of single shooting is to transform OCP(4.77) into a finite dimensional problem by
considering principally the control variables at the chosen discretization points as decision
variables

𝑧SS =
(︀
𝑢(1), ..., 𝑢(𝑙𝑢−1)

)︀
. (4.78)
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If the process duration 𝑡𝑑 is free, or if there are free dimensions in the initial or final state,
the corresponding variables in 𝑥(0), 𝑥(1) can be added as additional decision variables.
In OCP(4.77) the state at 𝜏 (𝑖), 𝑖 ∈ [1, ..., 𝑙𝑢] is obtained recursively based on the discrete
dynamics (4.77b), i.e. state is determined by integration, starting from 𝑥(0), using the
control vectors 𝑢(0), ..., 𝑢(𝜏 (𝑖−1)). We denote the integrated state as

𝑥̃(𝜏 (𝑖)) = 𝑥(𝑥(0), 𝑢(0), ..., 𝑢(𝜏 (𝑖−1))). (4.79)

The trajectory defined by the integrated state is referred to as shooting trajectory (cf. Figure
4.1a). The boundary condition to reach the terminal state 𝑥(1) can now be written as
shooting defect constraint

𝐷 = 𝑥̃(1)− 𝑥(1) = 0. (4.80)

To complete the NLP formulation the path constraints (4.77e) are checked at a subset of 𝑇𝑢,
using the integrated state 𝑥̃(𝜏 (𝑖)) as approximation of 𝑥(𝑖), meaning 𝑐(𝑢(𝑖), 𝑥̃(𝑖)) is evaluated
for some 𝑖 ∈ [1, ..., 𝑙𝑢].

Multiple Shooting

Multiple shooting breaks the OCP into segments and performs single shooting on each seg-
ment individually. Multiple shooting discretizes the state equations directly, while at the
same time adding additional defect constraints to enforce the continuity of the state trajec-
tory at the discretization points.
Let the state trajectory 𝑥(𝜏) be discretized on the grid

𝑇𝑥 ⊆ 𝑇𝑢, {0; 1} ∈ 𝑇𝑥. (4.81)

𝑇𝑠 := 𝑇𝑥∖{1} are called shooting nodes.
Let 𝑘, 1 ≤ 𝑘 ≤ 𝑙𝑥 − 1 be the index of the shooting nodes. The intervals 𝑆(𝑘) = [𝜏 (𝑘); 𝜏 (𝑘+1)],
𝜏 (𝑘) ∈ 𝑇𝑠, are called shooting intervals. Note that 𝜏 (𝑘) ∈ 𝑇𝑠 is also in 𝑇𝑢. The index 𝑖 for
which 𝜏 (𝑘) = 𝜏 (𝑖) ∈ 𝑇𝑢 depends on the distribution of the integration steps over the shooting
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Figure 4.1: Single shooting (a) and multiple shooting (b) using Euler integration of the state
equations and zero order hold of the control.
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intervals (cf. Figure 4.1b).
The initial state for the integration in interval 𝑆(𝑘) is 𝑥(𝜏 (𝑘)). Let the endpoint of the
integration chain in interval 𝑆(𝑘) be 𝑥̃[𝜏 (𝑘+1)]. To assure the continuity of the state trajectory
the defect constraints 𝐷 are added:

𝐷 =

⎛⎜⎝𝑑
(1)

...
𝑑(𝑙𝑥−1)

⎞⎟⎠ =

⎛⎜⎝𝑥̃(𝜏 (2))− 𝑥(𝜏 (2))
...
𝑥̃(1)− 𝑥(1)

⎞⎟⎠ = 0. (4.82)

Multiple shooting breaks the dependency of the state on the control prior to the previous
shooting node. Depending on the length of the shooting intervals this leads to a large sparse
NLP. For the case 𝑇𝑥 := 𝑇𝑢 all shooting intervals have length one, which is referred to as
full discretization (cf. Figure 4.2b). Full discretization obviously results into the highest
possible sparsity.
The decision variables for multiple shooting are the control vectors on the grid 𝑇𝑢 and the
state vectors on the grid 𝑇𝑥.

𝑧MS =
(︀
𝑢(1),...,𝑢(𝑙𝑢−1),𝑥(1),...,𝑥(𝑙𝑥)

)︀
. (4.83)

If the process duration 𝑡𝑑 is free, it is an additional decision variable.

Remark 4.84 (Interpolation of the Control Function)
For higher order integration methods the control function must be evaluated at intermediate
points of the grid 𝑇𝑢. To obtain the control variables at the intermediate points the con-
trol function is commonly interpolated using constant, linear or cubic spline interpolation.
In case of an explicit one-step method, e.g. Runge-Kutta-4, the state at the inner interval
points can be computed by numerical forward-evaluation of the inner integration steps (cf.
Figure 4.2). Another approach is to make the intermediate points part of the discretiza-
tion grid. The advantageous and disadvantageous of different combinations of integration-,
discretization- and control interpolation methods are for example discussed in [Bet10].

Remark 4.85 (Approximation of the Location of Corners and Points of Discontinuity)
With a fixed discretization grid, the exact location of corners and points of discontinuity
remains unknown. The solution of the transcribed NLP is inaccurate, because it is smeared
over these critical points. If the structure of the continuously differentiable arcs is known,
the solution accuracy can be improved by determining the exact location of the critical points.
The problem must therefore be divided into multiple phases, corresponding to the continu-
ously differentiable arcs. The phase boundaries are linked together by defect constraints,
analogously to the shooting defects.
An optimization of the phase lengths can be used to determine the location of critical points
exactly, as at an optimum the phase transition points must match the critical points. This
approach however requires a very good optimization start value. It can be practical to first
solve the problem, neglecting the critical points, and then to use the solution as start value
for a multi-phase formulation.
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Figure 4.2: Multiple shooting (a) and full discretization (b) transcription using linear control
interpolation. The dynamic equations are integrated using a higher order one-step method,
e.g. Runge-Kutta (RK4), requiring the evaluation of the state and control at an intermediate
interval point.

4.4.2 Formulation as Nonlinear Program
By grouping the optimization variables and constraints a discretized OCP can be written
in form of an NLP.

min
𝑧

𝑓(𝑧)

s.t. 𝑔(𝑚)(𝑧) = 0 𝑚 = 1,...,𝑛𝑒𝑞

𝑔(𝑚)(𝑧) ≤ 0 𝑚 = 𝑛𝑒𝑞 + 1,...,𝑛𝑔

While the NLP objective function can be directly obtained from the discretized OCP, the
discretized constraints must be assembled into joined the function 𝑔(𝑧).
The human readability of an NLP and the observability of the temporal context of the
underlying optimal control problem heavily depend on the ordering of the decision variables
and constraints. An exemplary ordering that allows a blockwise extraction of the discretized
state and control functions is detailed in Appendix E.
After the transcription into an NLP an OCP can be treated numerically. NLPs are predom-
inately solved using Newton or Quasi-Newton methods, where in each iteration either QP
or an interior point method is used to determine a feasible descent direction. This concludes
the preliminary considerations on optimization theory.

Remark 4.86 (NLP Scaling)
The convergence rate of Newton or Quasi-Newton methods depends on the condition of
the KKT matrix (4.63). In practice scaling techniques to improving the condition of the
KKT matrix play an important role: Even if theoretically an optimal solution is attainable,
numerical reasons prevent the solution of badly conditioned problems. An automatic scaling
technique for discretized OCPs based on Büskens [Büs98] and Betts [Bet10] is illustrated in
Appendix F.





CHAPTER 5
Real-Time Approximation of Optimal Controls Using Parametric
Sensitivities

For closed loop optimal control an OCP has to be solved at each time instant to take into
account the current initial state. In a clocked control system the time required to solve
the associated optimization problem is the limiting factor concerning the frequency of the
control loop. It is thus a central goal of current research to speed-up the solution of OCPs
arising during closed loop control.
The complexity of OCPs is not determined by linearity, but by convexity and the consider-
ation of inequality constraints. Less complex problems allow for more specialized solution
algorithms which require less computational effort and thus enable a faster solution, which
is of greatest importance for the control of fast paced dynamics. Closed loop optimal control
technologies can be categorized according to the classes of static optimization problems to
which they can be applied (Figure 5.1).
Linear control systems without constraints and with a quadratic objective1 can be tran-
scribed into a quadratic program (QP) without inequality constraints. For this special

SDP

NLP

QP
(convex)

NMPC

PSA

QP
(lin. eq. constr.) LQRSOCP

LMPC

Figure 5.1: Classes of optimization problem and closed loop optimal control strategies

1 More specifically a weighted sum of quadratic control input and quadratic state error.
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case a solution of the HJB equation is known, having the form of a linear, time invariant
state feedback law which is known as the Ricatti control law, or linear quadratic regulator
(LQR).
If inequality constraints on the control or state functions must be taken into account a closed
form optimal feedback law, like LQR, is not possible, because the associated optimization
problem must be solved iteratively, e.g. by using Newton’s method.
An important distinction is whether or not the optimization problem is convex, because for
convex problems finding the global optimum can be guaranteed with a polynomial bound on
the required computation time. The most general convex optimization problem formulation
is a semidefinite program (SDP) (based on linear matrix inequalities). A popular subclass
of SDPs are second order cone programs (SOCPs), which restrict the optimum to lie in cone.
SOCPs include QPs with convex constraints as special cases. Because of the guaranteed
upper runtime bound convex optimization problems are well suited for clocked receding
horizon control. Based on the underlying linear dynamic system this approach is referred
to as linear model predictive control (LMPC), instead of more accurately convex MPC.
The open loop solution for a nonconvex OCP can be obtained by solving an NLP. Likewise
receding horizon control can be based on NLPs to achieve (sub-) optimal closed loop control,
which is commonly referred to as nonlinear model predictive control (NMPC).
A popular approach to reduce the computational effort for closed loop optimal control is to
cast the associated optimization problem into a lower complexity class, which is especially
attractive if one is able to go from a nonconvex to a convex formulation. Determining such
a reformulation without or with acceptable simplifications can be very difficult though.
This thesis investigates a different approach to reduce the computational effort for closed
loop control of a nonconvex optimal control process. We avoid online optimization alto-
gether by approximating neighboring optimal solutions based on Taylor expansion using
linearizions of the first order necessary optimality conditions of multiple optimization prob-
lems which arise during closed loop execution. In this chapter we review recent related
results in the field of parametric sensitivity analysis (PSA) of NLPs and then extend the
theory to a closed loop control law for nonlinear dynamic systems.

5.1 Parametric Optimal Problem and Parametric Sensitivity
A parametric OCP is the extension of a single OCP into a family of OCPs described by a
parameter vector.

Problem 5.1 (Parametric, Autonomous, Normalized Optimal Control Problem)
Based on the definitions from Section 4.1.1 a family of optimal control problems is defined
by introducing a parameter vector 𝑝 ∈ R𝑛𝑝 .

min
𝑥,𝑢,𝑡𝑑

𝐽(𝑥(𝜏),𝑢(𝜏),𝑡𝑑,𝑝) = 𝑚(𝑥(1),𝑡𝑑,𝑝) + 𝑡𝑑

ˆ 1

0
𝑙(𝑥(𝜏),𝑢(𝜏),𝑝) d𝜏 (5.1a)

s.t. 𝑥̇ = 𝑡𝑑𝑓(𝑥(𝜏),𝑢(𝜏),𝑝) (5.1b)
𝜓𝑠(𝑥(0),𝑝) = 0 (5.1c)
𝜓𝑓 (𝑥(1),𝑝) = 0 (5.1d)

𝑐(𝑥(𝜏 ),𝑢(𝜏),𝑝) ≤ 0 (5.1e)
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This problem is denoted OCP(5.1)(𝑝). For a nominal parameter value 𝑝 := 𝑝0 the problem
OCP(5.1)(𝑝0) has the nominal, optimal solution ⋆

𝑥(𝜏,𝑝0), ⋆
𝑢(𝜏,𝑝0),

⋆

𝑡𝑑(𝑝0).

Parametric sensitivity analysis determines the change of the nominal solution with respect
to a small change in the nominal parameter.
Let all functions in OCP(5.1)(𝑝) be sufficiently continuously differentiable with respect to
their arguments such that the nominal solution is locally a continuously differentiable func-
tion of the parameter vector 𝑝 almost everywhere. Consider the perturbations

𝛥𝑝𝑘 = (0, ..., 𝛥𝑝(𝑘),..., 0)ᵀ, 1 ≤ 𝑘 ≤ 𝑛𝑝. (5.2)

Let 𝑝𝑘 = 𝑝0 + 𝛥𝑝𝑘 and let ⋆
𝑢(𝑗)(𝜏,𝑝0), 1 ≤ 𝑗 ≤ 𝑛𝑢 be the nominal optimal control functions

of OCP(5.1)(𝑝0) with the corresponding optimal state trajectories ⋆
𝑥(𝑗)(𝜏,𝑝0), 1 ≤ 𝑗 ≤ 𝑛𝑥 and

the optimal duration
⋆

𝑡𝑑(𝑝0). The total directional derivatives

d ⋆
𝑢(𝑗)

d𝑝(𝑘)
(𝜏,𝑝0) = lim

𝛥𝑝(𝑘)→0

⋆
𝑢(𝑗)(𝜏,𝑝0 +𝛥𝑝(𝑘))− ⋆

𝑢(𝑗)(𝜏,𝑝0)
𝛥𝑝(𝑘)

, 1 ≤ 𝑗 ≤ 𝑛𝑢, 1 ≤ 𝑘 ≤ 𝑛𝑝 (5.3a)

d ⋆
𝑥(𝑗)

d𝑝(𝑘)
(𝜏,𝑝0) = lim

𝛥𝑝(𝑘)→0

⋆
𝑥(𝑗)(𝜏,𝑝0 +𝛥𝑝(𝑘))− ⋆

𝑥(𝑗)(𝜏,𝑝0)
𝛥𝑝(𝑘)

, 1 ≤ 𝑗 ≤ 𝑛𝑥, 1 ≤ 𝑘 ≤ 𝑛𝑝 (5.3b)

d
⋆

𝑡𝑑

d𝑝(𝑘)
(𝑝0) = lim

𝛥𝑝(𝑘)→0

⋆

𝑡𝑑(𝑝0 +𝛥𝑝(𝑘))−
⋆

𝑡𝑑(𝑝0)
𝛥𝑝(𝑘)

, 1 ≤ 𝑘 ≤ 𝑛𝑝. (5.3c)

are called parametric sensitivities (PS) of the optimal solution in direction 𝛥𝑝𝑘.
The above calculation however is numerically problematic and inefficient (𝑛𝑝 additional op-
timal control problems would have to be solved to determine the effects of the perturbations
on the optimum). A numerically stable and efficient computation method is illustrated in
the following section.
A necessary condition for parametric sensitivity analysis (PSA) is the differentiability of the
nominal solution with respect to the parameters, which must hold at least locally around
the nominal parameter value. Maurer and Pesch [Mau94][Mau95] provide a theoretical basis
for PSA by proving the solution differentiability for parametric OCPs under mixed state
and control constraints. Parts of the theory are subject to ongoing research, namely a proof
for OCPs with pure state constraints is an open problem.
Depending on how the nominal solution of an OCP was obtained, PSA can be based on
either indirect or direct solution methods. Both approaches linearize necessary conditions of
optimality around the nominal parameter value. This work focuses on the direct approach
based on a linearization of the KKT conditions of NLPs.

5.2 Parametric Sensitivity Analysis of Nonlinear Programs
The PSA of NLPs was first investigated by Fiacco [Fia83]. Later Büskens [Büs98] and
Maurer [Mau09] investigate the sensitivity of discretized OCPs in the frame of NLPs using
SQP methods [Büs00].
The sensitivities obtained under KKT conditions are interpreted as approximative solutions
to (5.3). A prerequisite for this approximation is the convergence of the finite dimensional
NLP to the optimal control solution obtained using PMP. This convergence has been proven
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for different classes of OCPs. Malanowski et al. [Mal97] derive convergence for problems
with mixed control and state constraints using an explicit Euler discretization, Dontchev and
Hager [Don01] prove the convergence of the explicit Euler discretization for simultaneous
control and state constraints. Hager [Hag00] proves convergence for control constrained
problems using Runge-Kutta methods.
To directly obtain parametric sensitivities for OCP(5.1)(𝑝) the problem is discretized and
transcribed into a parametric NLP analogously to the process described in Chapter 4.4,
while additionally carrying the parameter 𝑝.

Problem 5.4 (Parametric Nonlinear Program)
Let 𝑧 ∈ R𝑛𝑧 , 𝑝 ∈ P ⊂ R𝑛𝑝 and let 𝑓 : R𝑛𝑧 × R𝑛𝑝 → R and 𝑔 : R𝑛𝑧 × R𝑛𝑝 → R𝑛𝑔 . The family
of nonlinear programming problems defined by a parameter vector 𝑝

min
𝑧∈R𝑛𝑧

𝑓(𝑧,𝑝) (5.4a)

s.t. 𝑔(𝑚)(𝑧,𝑝) = 0 𝑚 = 1,...,𝑛𝑒𝑞 (5.4b)
𝑔(𝑚)(𝑧,𝑝) = 0 𝑚 = 𝑛𝑒𝑞 + 1,...,𝑛𝑔 (5.4c)

is called NLP(5.4)(𝑝). For a nominal parameter 𝑝 := 𝑝0 the nominal solution is ⋆
𝑧0 = ⋆

𝑧(𝑝0)
with corresponding Lagrange multipliers ⋆

𝜇0 = ⋆
𝜇(𝑝0).

We follow the work of Büskens [Büs02] to introduce a fast solution approximation method
for parametric NLPs, which is the basis of our investigation.
Note that inactive constraints have no influence on the evaluation of necessary or sufficient
conditions, because for the Lagrangian multipliers at an optimal solution it holds that
⋆
𝜇(𝑚) = 0, 𝑚 /∈ 𝑎(𝑧), cf. (4.55). If the nominal solution and the active indices are known, the
considerations for post optimal sensitivity analysis can be reduced to the active constraints
𝑔𝑎 and the associated multipliers 𝜇𝑎. The Lagrangian function of the reduced problem,
expanded with the parameter 𝑝, is thus

𝐿(𝑧,𝜇𝑎,𝑝) = 𝑓(𝑧,𝑝) + (𝜇𝑎)ᵀ𝑔𝑎(𝑧,𝑝). (5.5)

Consider a fixed nominal parameter 𝑝0 ∈ P and the corresponding nominal problem NLP(5.4)(𝑝0).
If the nominal solution ⋆

𝑧(𝑝0) is regular and the sufficient conditions (4.65) hold, then the
nominal solution and the associated Lagrange multipliers are locally differentiable functions
of the parameter 𝑝:

Theorem 5.6 (Sensitivity)
Let 𝑓 and 𝑔 be two times continuously differentiable w.r.t. to 𝑧 and let the gradients ∇𝑧𝑓
and ∇𝑧𝑔 and the function 𝑔 be one time continuously differentiable with respect to 𝑝. Fur-
thermore let ⋆

𝑧 and ⋆
𝜇 be regular and fulfill the sufficient conditions of optimality (4.65) for

NLP(5.4)(𝑝0). Then there exists a neighborhood N0(𝑝0) and continuously differentiable func-
tions 𝑧 : N0(𝑝0)→ R𝑛𝑧 and 𝜇 : N0(𝑝0)→ R𝑛𝑔 such that

1. 𝑧(𝑝0) = ⋆
𝑧, 𝜇(𝑝0) = ⋆

𝜇,
2. the set of active indices does not change,

𝑎(𝑧(𝑝),𝑝) ≡ 𝑎(𝑧(𝑝0),𝑝0), for all 𝑝 ∈ N0(𝑝0), (5.6a)
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3. the gradients in ∇𝑧𝑔𝑎(𝑧(𝑝),𝑝) are linearly independent

𝑟𝑎𝑛𝑘(∇𝑧𝑔𝑎(𝑧(𝑝),𝑝)) = |𝑎(𝑧(𝑝),𝑝)|, for all 𝑝 ∈ N0(𝑝0), (5.6b)

4. ⋆
𝑧(𝑝) and ⋆

𝜇(𝑝) are regular and fulfill the sufficient conditions of optimality (4.65) for
the disturbed problem NLP(5.4)(𝑝). Furthermore ⋆

𝑧(𝑝) is a strong local minimum for
NLP(5.4)(𝑝) with Lagrange multiplier ⋆

𝜇(𝑝).

Proof: The proof can be found in [Fia83].

Based on Theorem (5.6) an explicit formulation of the sensitivity differentials of the primal-
and dual-variables can be given. The KKT conditions (4.63) for NLP(5.4)(𝑝) are

𝐾( ⋆
𝑧,

⋆
𝜇𝑎,𝑝) =

(︂
∇𝑧𝐿( ⋆

𝑧,
⋆
𝜇𝑎,𝑝)

𝑔𝑎( ⋆
𝑧,𝑝)

)︂
=

(︂
∇𝑧𝑓( ⋆

𝑧,𝑝) + ( ⋆
𝜇𝑎)ᵀ∇𝑧𝑔𝑎( ⋆

𝑧,𝑝)
𝑔𝑎( ⋆
𝑧,𝑝)

)︂
= 0. (5.7)

Under the conditions of Theorem (5.6) the Jacobian matrix of 𝐾( ⋆
𝑧,

⋆
𝜇𝑎,𝑝) w.r.t. (𝑧,𝜇𝑎) can

be obtained.

∇𝑧,𝜇𝑎
𝐾( ⋆

𝑧,
⋆
𝜇𝑎,𝑝) =

(︂
∇2

𝑧𝐿( ⋆
𝑧,

⋆
𝜇𝑎,𝑝) (∇𝑧𝑔𝑎( ⋆

𝑧,𝑝))ᵀ
∇𝑧𝑔𝑎( ⋆

𝑧,𝑝) 0

)︂
(5.8)

The differentiation of 𝐾( ⋆
𝑧(𝑝), ⋆

𝜇𝑎(𝑝),𝑝) ≡ 0 with respect to 𝑝 at the nominal parameter
𝑝0 leads to a linear system for the PS of the entire optimal solution and the associated
Lagrangian multipliers.(︂

∇2
𝑧𝐿( ⋆

𝑧0,
⋆
𝜇𝑎,0,𝑝0) (∇𝑧𝑔𝑎( ⋆

𝑧0,𝑝0))ᵀ
∇𝑧𝑔𝑎( ⋆

𝑧0,𝑝0) 0

)︂(︂ d𝑧

d𝑝
(𝑝0)

d𝜇𝑎

d𝑝
(𝑝0)

)︂
+

(︂
∇2

𝑧𝑝𝐿( ⋆
𝑧0,

⋆
𝜇𝑎,0,𝑝0)

∇𝑝𝑔𝑎( ⋆
𝑧0,𝑝0)

)︂
= 0 (5.9)

Under the conditions of Theorem (5.6) the matrix (5.8) is invertible, which leads to the
following explicit expression for the PS.(︂ d𝑧

d𝑝
(𝑝0)

d𝜇𝑎

d𝑝
(𝑝0)

)︂
= −

(︂
∇2

𝑧𝐿( ⋆
𝑧0,

⋆
𝜇𝑎,0,𝑝0) (∇𝑧𝑔𝑎( ⋆

𝑧0,𝑝0))ᵀ
∇𝑧𝑔𝑎( ⋆

𝑧0,𝑝0) 0

)︂−1 (︂∇2
𝑧𝑝𝐿( ⋆

𝑧0,
⋆
𝜇𝑎,0,𝑝0)

∇𝑝𝑔𝑎( ⋆
𝑧0,𝑝0)

)︂
(5.10)

The Hessian ∇2
𝑧𝐿( ⋆

𝑧0,
⋆
𝜇𝑎,0,𝑝0) evaluated at the nominal solution is guaranteed to be positive

definite under the assumptions and the right hand side is computable.
With the multiple shooting transcription of Chapter 4.4 the matrix d𝑧

d𝑝
is of the form (5.11).

(︂
d𝑧
d𝑝(𝑝0)

)︂
𝑛𝑧×𝑛𝑝

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1⏞  ⏟  
d𝑢(:,1)

𝑑𝑝(1) (𝑝0) . . .

1⏞  ⏟  
d𝑢(:,1)

𝑑𝑝(𝑛𝑝) (𝑝0)
... . . . ...

d𝑢(:,𝑛𝑢)

d𝑝(1) (𝑝0) . . . d𝑢(:,𝑛𝑢)

d𝑝(𝑛𝑝) (𝑝0)
d𝑥(:,1)

d𝑝(1) (𝑝0) . . . d𝑥(:,1)

d𝑝(𝑛𝑝) (𝑝0)
... . . . ...

d𝑥(:,𝑛𝑥)

d𝑝(1) (𝑝0) . . . d𝑥(:,𝑛𝑥)

d𝑝(𝑛𝑝) (𝑝0)
∂𝑡

𝑙

∂𝑝(1) (𝑝0) . . . ∂𝑡
𝑙

∂𝑝(𝑛𝑝) (𝑝0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

} 𝑙𝑢

} 𝑙𝑢
} 𝑙𝑥

} 𝑙𝑥
} 1

(5.11)

Block d𝑢(:,𝑗)

d𝑝(𝑘) ∈ R𝑙𝑢 × R, 1 ≤ 𝑗 ≤ 𝑛𝑢, 1 ≤ 𝑘 ≤ 𝑛𝑝 contains the parametric sensitivities of
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the nominal discretized control function 𝑢(:,𝑗) on the grid 𝑇𝑢 (4.76) against a perturbation
in dimension 𝑘 of the parameter vector 𝑝. The layout of the blocks for the discretized state
trajectories follows analogously on the grid 𝑇𝑥 (4.81) respectively.
Before the wide popularity of direct optimization methods PSA was conducted based on
indirect methods, using a linearization of the PMP conditions. Pesch [Pes89a][Pes89b]
transforms an OCP with mixed state and control constraints into a multi-point boundary
value problem. The multi-point boundary value problem is solved numerically using a
modified multiple shooting method which allows to obtain the PS as a byproduct. For
problems with mixed state and control constraints an expanded set of necessary conditions
is required to characterize the entry, exit and contact points of the active constraint arcs and
the induced conditions on the adjoint variables. If the control function is only piecewise
continuously differentiable, additionally the points of discontinuity must be determined.
The linearization of the expanded PMP conditions then leads to sensitivities including the
shifting behavior of the switching points.
The main advantage of the direct approach is that the KKT conditions are more compact
and easier to handle than the PMP conditions. Direct methods often omit the explicit
determination of points of discontinuity of the control function through the immediate
discretization of the OCP. If the points of discontinuity are not explicilty considered in the
transcription, the related jump condititions, as used in PMP, are not reflected in the KKT
conditions, which simplifies the analysis, but it can also result into a lower solution accuracy,
because the discontinuities and corner points are only determined up to the accuracy of the
discretization grid.

5.3 Real-Time Approximation of NLP Solutions

In control engineering an important application of PSA is the computation of fast near op-
timal feedback controls. Real-time capable optimal control techniques are highly demanded
technologies that have vast potential in many application fields. For systems with fast
nonlinear dynamics the online solution of an optimal control problem is sometimes not fea-
sible on computationally weak embedded systems. An alternative to online optimization is
the use of parametric sensitivity analysis to compute neighboring optimal solutions using a
Taylor expansion of the nominal solution.

5.3.1 Taylor Expansion of the Nominal NLP Solution

If the nominal solution ⋆
𝑧(𝑝0), ⋆

𝜇𝑎(𝑝0) of NLP(5.4)(𝑝0) and the parametric sensitivities of the
nominal solution are known, a linear approximation of the optimal solution ⋆

𝑧(𝑝), ⋆
𝜇𝑎(𝑝) of

NLP(5.4)(𝑝) for disturbed parameters 𝑝 can be obtained using a Taylor expansion of first
order. (︂ ⋆

𝑧(𝑝)
⋆
𝜇𝑎(𝑝)

)︂
≈

(︂ ⋆
𝑧0

⋆
𝜇𝑎,0

)︂
+

(︂ d𝑧

d𝑝
(𝑝0)

d𝜇𝑎

d𝑝
(𝑝0)

)︂
(𝑝− 𝑝0) (5.12)

The perturbed parameter 𝑝 is assumed to be known from measurement or estimation at
update time. All other quantities in (5.12) can be computed offline and are known at
process runtime. For control applications usually only an update of the control function
and/or the state trajectories are of interest, while the Lagrange multipliers are not required.
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Equation (5.12) can then be reduced to

⋆
𝑧(𝑝) ≈ 𝑧[1](𝑝) := 𝑧0 + d𝑧

d𝑝(𝑝0) (𝑝− 𝑝0) (5.13a)

= 𝑧0 −
d𝑧
d𝑝(𝑝0) 𝑝0⏟  ⏞  

prepared offline

+d𝑧
d𝑝(𝑝0) 𝑝⏟  ⏞  

online adaption

. (5.13b)

The evaluation of (5.13b) only requires one matrix vector multiplication and one vector
addition, such that it can be computed almost instantly even on computationally weak
processing hardware. The Taylor expansion of the optimal solution under KKT-conditions
takes account feasibility and optimality. The approximated solution contains an adapted
near optimal control sequence for the entire process and, depending on the state discretiza-
tion, the adapted state trajectory.

5.3.2 Iterative Feasibility and Optimality Restoration
For optimization problems with constraints that are nonlinear in the variables or the param-
eters, the approximation 𝑧[1](𝑝) does not fulfill the constraints exactly, due to the truncation
of the Taylor expansion (5.13b). The resulting constraint error can be computed exactly
as

𝑔𝑎(𝑧[1],𝑝) = 𝜀[1] ̸= 0. (5.14)

The approximate solution 𝑧[1](𝑝) can be significantly improved [Büs02] by taking the er-
ror 𝜀[1] into account. Consider linear perturbations 𝑞 ∈ R𝑛𝑔 in the constraint function of
NLP(5.4)(𝑝).

𝑔(𝑧,𝑝)− 𝑞 ≤ 0. (5.15)

The linear constraint perturbations 𝑞 are a specialization of the general perturbations 𝑝.
Obviously for a nominal value of 𝑞0 = 0 the original problem is retained. The parameter 𝑞
is also of the same type as the constraint error 𝜀[1]. In the sensitivity analysis the perturba-
tions 𝑞 can be considered analogously to the parameters 𝑝. Let d𝑧

d𝑞𝑎
be the sensitivity of the

active constraints against linear perturbations. With a transcription as in Chapter 4.4 this
matrix is of the form (5.16).

(︂
d𝑧
d𝑞𝑎

)︂
𝑛𝑧×𝑛𝑎

=

⎛⎝
|𝐶𝑎|⏞ ⏟ 
d𝑢

d𝑞𝐶

|𝐷|⏞ ⏟ 
d𝑢

d𝑞𝐷

|𝛹𝑎|⏞ ⏟ 
d𝑢

d𝑞𝛹

d𝑥

d𝑞𝐶

d𝑥

d𝑞𝐷

d𝑥

d𝑞𝛹

d𝑡𝑑

d𝑞𝐶

d𝑡𝑑

d𝑞𝐷

d𝑡𝑑

d𝑞𝛹

⎞⎠ } 𝑙𝑢𝑛𝑢

} 𝑙𝑥𝑛𝑥

} 1
(5.16)

Using (5.16) a better approximation than (5.13b) can be obtained by

𝑧[𝑘+1](𝑝) = 𝑧[𝑘](𝑝) + d𝑧
d𝑞𝑎

(𝑞0) 𝑔𝑎(𝑧[𝑘],𝑝), (5.17)

starting with 𝑘 = 1. Equation (5.17) defines an iterative procedure for 𝑘 = 2, 3, .... Büskens
[Büs02] has shown, that under additional assumptions on the functions 𝑓 and 𝑔 iteration
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(5.17) converges linearly against a fixpoint 𝑧[∞](𝑝), if the perturbation 𝛥𝑝 is sufficiently
small. At the fixpoint the active constraints are fulfilled exactly.

Theorem 5.18 (Convergence on Invariant Subspaces)
Let the conditions on Theorem (5.6) be satisfied and let the functions 𝑓 and 𝑔 be three times
continuously differentiable with respect to 𝑧 and 𝑝. Then there exists a neighborhood U(𝑝0)
of 𝑝0, such that for all 𝑝 = 𝑝0 +𝛥𝑝 ∈ U(𝑝0) the following statements are true. Consider the
orthogonal decomposition

1
2(𝛥𝑝)ᵀ d2𝑧

d𝑝2
(𝑝0,0)𝛥𝑝 = 𝑣 + 𝑤, (5.18a)

with 𝑣 ∈ Kern(∇𝑧𝑔𝑎(𝑝0)) ⊂ R𝑛𝑧 and 𝑤 ∈ (Kern(∇𝑧𝑔𝑎(𝑝0)))⊥ ⊂ R𝑛𝑧 , then the following error
bounds hold

‖𝑣‖ = O(‖𝛥𝑝‖2) (5.18b)⃦⃦
𝑧(𝑝)− 𝑧[∞](𝑝)

⃦⃦
= O(‖𝛥𝑝‖2) (5.18c)⃦⃦

𝑓(𝑧(𝑝),𝑝)− 𝑓(𝑧[∞](𝑝),𝑝)
⃦⃦

= O(‖𝛥𝑝‖3) (5.18d)⃦⃦
𝑔𝑎(𝑧[∞](𝑝),𝑝)

⃦⃦
= 0. (5.18e)

If additionally the Lagrange multipliers are iterated with

𝜇̃[𝑘+1]
𝑎 (𝑝) := 𝜇̃[𝑘]

𝑎 (𝑝)− d𝜇𝑎

d𝑞𝑎

(𝑝0,0)𝑔𝑎(𝑧[𝑘](𝑝),𝑝), (5.18f)

then (5.18f) also converges against a fixpoint 𝜇̃[∞](𝑝) with the following error bounds:⃦⃦
𝜇𝑎(𝑝)− 𝜇̃[∞]

𝑎 (𝑝)
⃦⃦

= O(‖𝛥𝑝‖2) (5.18g)⃦⃦
∇𝑧𝐿(𝑧[∞](𝑝),𝜇̃[∞]

𝑎 (𝑝),𝑝)
⃦⃦

= O(‖𝛥𝑝‖2) (5.18h)

The iterations (5.17) and (5.18f) converge linearly and the fixpoints 𝑧[∞](𝑝) and 𝜇[∞]
𝑎 (𝑝)

depend on the nominal value 𝑝0 and the perturbation 𝑝: 𝑧[∞](𝑝; 𝑝0,𝑝), 𝜇[∞]
𝑎 (𝑝; 𝑝0,𝑝).

Proof: The proof can be found in [Büs02].

Theorem (5.18) offers a significant improvement over the Taylor expansion (5.13b). In partic-
ular the corrector iteration (5.17) allows to obtain a trajectory which fulfills the discretized
dynamics exactly: The discrete dynamics (represented through the shooting equality con-
straints) are always part of the active set, thus the differential defects are eliminated through
the corrector iteration. At the fixpoint the integration of 𝑢̃[∞](𝑝) ⊂ 𝑧[∞](𝑝) yields a state
trajectory which is an exact solution to the discrete dynamics.
The real-time solution approximation is summarized in Algorithm (1).
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Algorithm 1 Real-time solution approximation [Büs02]
1: procedure RTS(𝑝,𝜀[∞])
2: 𝑧[𝑘] = 𝑧0 − d𝑧

d𝑝 𝑝0 + d𝑧
d𝑝 𝑝 ◁ (5.13b)

3: while
⃦⃦
𝑔𝑎(𝑧[𝑘],𝑝)]

⃦⃦
> 𝜀[∞] do

4: 𝑧[𝑘+1] = 𝑧[𝑘] + d𝑧
d𝑞𝑎

𝑔𝑎(𝑧[𝑘],𝑝) ◁ (5.17)
5: end while
6: return 𝑧[∞]

7: end procedure

5.4 Instructive Example: Control of a Rocket Car
In this section the real-time approximation scheme is applied to an academic optimal control
problem that we use as basis for discussion.
We consider the thrust optimal control of a rocket car on a rail (see Figure 5.2). A straight
forward modelling of this motion corresponds to a double integrator. In addition we consider
an efficiency loss on the control force and a quadratic drag law. The resulting dynamics are
easy to grasp, yet nonlinear in the control and the state, which makes them an interesting
discussion example. The control problem is to transfer the car from the initial state to the
final state in a fixed amount of time, using minimum fuel.

Problem 5.19 (Rocket Car)

min
𝑢
𝐽(𝑥(𝜏),𝑢(𝜏),𝑝) = 𝑡𝑑

ˆ 1

0
𝑢(𝜏)2 d𝜏 (5.19a)

s.t. 𝑟̇ = 𝑡𝑑𝑣 (5.19b)
𝑣̇ = 𝑡𝑑 (𝑢− 𝑒𝑢|𝑢| − 𝑐𝐷𝑣|𝑣|) , 𝑢 ∈ R (5.19c)

𝜓𝑠(𝑥(0),𝑝) =
(︂
𝑟𝑠

𝑣𝑠

)︂
(5.19d)

𝜓𝑓 (𝑥(1),𝑝) =
(︂
𝑟𝑓

𝑣𝑓

)︂
(5.19e)

where 𝑡𝑑 ∈ R+ is the fix process duration, 𝑒 ∈ [0; 1[ is the engine efficiency loss and 𝑐𝐷 ∈ R+

is the drag coefficient. The parameter vector 𝑝 and its nominal value 𝑝0 are

𝑝 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
𝑐𝐷

𝑟𝑠

𝑣𝑠

𝑟𝑓

𝑣𝑓

𝑡𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑝0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒0

𝑐𝐷,0

𝑟𝑠,0

𝑣𝑠,0

𝑟𝑓,0

𝑣𝑓,0

𝑡𝑑,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3
1
0
0
1
0
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.19f)
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Figure 5.2: Rocket car

5.4.1 Nominal Solution and Parametric Sensitivities
OCP(5.19) is solved for the nominal case 𝑝 := 𝑝0. The problem is discretized using single
shooting with a Runge-Kutta scheme (RK4) on an equidistant control grid. The control
function is approximated using piecewise linear intervals.
The nominal optimal control function and the integrated state trajectories are shown in
Figures 5.3a to 5.3c. Due the drag, more fuel is required for accelerating the car than for
stopping it, such that the switching of the control occurs at 𝜏 ≈ 0.65.
The sensitivity differentials of the optimal control function (Figures 5.3d to 5.3j) predict
the effects of perturbations on the optimal solution. The simple system nature allows us
to compare the sensitivities against common sense expectations: If the engine inefficiency
increases, the required fuel increases as well, before and after the switching point, but it
does not impact the switching time itself (Figure 5.3d). An increase in drag however causes
a delay of the switching point (strong peak in Figure 5.3e). The sensitivities with respect to
the initial position (Figure 5.3f) and the final position (Figure 5.3h) are mirrored. Obviously
both impact the distance that the car must move equally, except that the sign is reversed.
The sensitivities with respect to initial and final velocity (Figures 5.3g and 5.3i) however
are not mirrored, because of the drag influence. An increased process duration obviously
reduces the amount of required fuel (Figure 5.3j).
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Figure 5.3: The images show the nominal control function (a), the integrated nominal state
trajectories (b, c) and the parametric sensitivity of the nominal control function w.r.t. the
perturbation parameters (d-j).
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5.4.2 Real-Time Solution Approximation

In the following we apply Algorithm 1 to counteract a perturbation in initial state, let

𝑝 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
𝑐𝐷

𝑟𝑠

𝑣𝑠

𝑟𝑓

𝑣𝑓

𝑡𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3
1
0
0
1
0
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝑝0

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0.2
0.2
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝛥𝑝

. (5.20)

The application of the nominal control function to the perturbed system results into an
error at the final state. Using Algorithm 1 the control function can be adapted to correct
the error. Figure 5.4 shows the resulting iterates. The initial Taylor expansion yields a
linear solution approximation (𝑘 = 1, red). The remaining constraint error is successively
reduced through the feasibility restoration iteration. The iteration sequence is converging
towards a fix-point at which the error in the active constraints is eliminated (cf. Theorem
5.18). After four corrector iterations (𝑘 = 5) the constraint error has been reduced to about
2 · 10−3. Additional iterations continue to reduce the error, but the changes are visually
indiscernible.
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Figure 5.4: Real-time solution approximation for 𝛥𝑟𝑠 = 0.2 and 𝛥𝑣𝑠 = 0.2 based on single
shooting. The state trajectories are obtained from integration of the dynamics using the
adapted control sequence.
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5.5 Exploring Parametric-Sensitivity-Based Control
To derive a closed loop control law on basis of the real-time solution approximation algo-
rithm, the solution obtained in the open loop NLP frame has to be led back to the closed
loop optimal control problem. In this chapter we prepare this step by exploring sensitivity-
based open loop controls to improve our understanding of the effects that different problem
formulations and discretizations have on Algorithm 1. The main points of investigation
are:

1. The use of state discretization in conjunction with Algorithm 1.
2. The convergence region of iteration (5.17).
3. Monitoring of the convergence progress at runtime.
4. The limitations of the approach.

5.5.1 Discretization of the State Functions
According to Betts [Bet10] multiple shooting offers decisive advantages over single shooting:
Multiple shooting is less dependent on an accurate optimization start value and it does
not suffer convergence problems in case of highly sensitive initial states or controls. In
addition multiple shooting often has a better convergence rate. The question arises if
multiple shooting possibly has similar advantages for the real-time solution approximation
scheme.
We investigate this question numerically at the example introduced in Section 5.4. We
compare two different NLP formulations, RCSS(𝑝) and RCFD(𝑝) of OCP(5.19)(𝑝). Both for-
mulations are based on an identical control grid, but the discretization of the state functions
differs. RCSS(𝑝) is based on single shooting, while RCFD(𝑝) is based on full discretization.
Both NLPs are solved for an identical nominal parameter 𝑝0.
We investigate the influence of the state discretization on the parametric sensitivities in
a highly precise numerical framework. The optimal solutions that are the basis for this
analysis fulfill the KKT conditions to 10−15, the required derivatives are quasi-analytic,
determined through algorithmic differentiation. The achieved numerical accuracy is thus
close to machine precision within the 64-bit IEEE-754 standard, which is 𝜀 ≈ 1.11 · 10−16.
The parametric sensitivities are computed at a KKT point; the numerical error in the KKT
conditions (compared to analytical analysis) propagates into the numeric sensitivity differ-
entials (5.10). This effect can be seen in Figure 5.5, which compares the control function
values and the sensitivity differentials of both formulations. The differences in the controls
are only slightly above the enforced precision1 (Figure 5.5a). However the differences be-
tween the parametric sensitivities (Figure 5.5b to 5.5h) are two to three orders of magnitude
larger2. This is the consequence from approximating the analytical PMP optimality condi-
tions through structurally differing KKT conditions. As the analytic sensitivity differentials
are unknown it is impossible to quantize the absolute error, or to determine which NLP
formulation yields more accurate sensitivity differentials. But a noteworthy observation is
that the sensitivities obtained via (5.10) depend on the specific NLP formulation and they
should not be mixed with sensitivities of other NLP formulations of the same OCP.

1 The difference can exceed the enforced precision, because the optimal objective values of RCSS(𝑝0) and
RCFD(𝑝0) differ by approximately 4𝜀.

2 The switching point of the control function can be clearly identified as numerically critical point.
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Figure 5.5: Numeric differences between the control function and the parametric sensitivities
of the control function for single shooting and full discretization of the rocket car problem
OCP(5.19)(𝑝0).

We now take a close look at the iteration sequences obtained by Algorithm 1 for both
discretizations. Therefore we exemplary perturb the initial state by 𝛥𝑥𝑠 = (0.2, 0.2)ᵀ. The
optimal control function iterate is obtained directly as output of Algorithm 1; the state
trajectory for single shooting is obtained by integration of the control function, while the
state trajectory for full discretization is part of the optimal solution and therefore directly
obtained from the iteration scheme.
Figure 5.6a and 5.6b show the first two iterates of the optimal control function. While
the Taylor expansion is identical up to numerical accuracy, the structural difference be-
tween RCSS(𝑝) and RCFD(𝑝) becomes apparent in the first feasibility correction step. The
approximation error of the Taylor expansion of the control variables⃦⃦

⋆
𝑢(𝑝)− 𝑢̃[1](𝑝)

⃦⃦
= O(‖𝛥𝑝‖2) (5.21)
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is distributed in differently for SS and FD:
In Single Shooting the approximation error (5.21) for each control variable accumulates,
because 𝑢̃[1](𝑝) is integrated nonstop from the initial state to the final state to obtain the
terminal error, i.e. a single initial value problem is solved.
For full discretization the state trajectories are part of the optimal solution and the Taylor
expansion contains 𝑥̃[1]

FD(𝑝) directly. The approximation error of the state variables is thus
also bounded by ⃦⃦

⋆
𝑥(𝑝)− 𝑥̃[1]

FD(𝑝)
⃦⃦

= O(‖𝛥𝑝‖2). (5.22)

FD solves one initial value problem per control interval. Each integration step is performed
based on a new initial state given by 𝑥̃[1]

FD(𝑝). FD prevents the cumulative error of the
integration chain by resetting the error for each integration interval based on the state
approximation. As a result the state trajectory for full discretization (Figures 5.6d and 5.6f)
deviates muss less than the state trajectory of single shooting (Figures 5.6c and 5.6e).
Using the direct state approximation as integration start value causes discontinuities of the
state trajectory, which can be clearly seen in Figure 5.6f. Note that in this example there is
no continuity error in the position trajectory 𝑟[1]

FD (Figure 5.6d) because the position (5.19b)
does not depend on 𝑝 directly, but only indirectly via 𝑣. The position is updated in each
iteration to match the velocity trajectory without error.
From iteration 𝑘 = 2 onwards the control function iterates differ significantly and the
iteration sequences of SS and FD converge to different fixpoints. Figure 5.7 shows the
iterates for 𝑘 = 1, ..., 5 and Figure 5.8 compares the final iterates at 𝑘 = 5 for SS and FD
with the true optimal solution.

Remark 5.23 (State Sensitivities for Single Shooting)
The parametric sensitivities of the state functions can be obtained using the chain rule, from
the relations (4.77b) and (4.79) [Büs00].

d𝑥(𝜏 (𝑖))
d𝑝 (𝑝0) = ∂𝑥(𝜏 (𝑖))

∂𝑧
( ⋆
𝑧0,𝑝0)

(︂
d𝑧
d𝑝

)︂
SS

(𝑝0) + ∂𝑥(𝜏 (𝑖))
∂𝑝

( ⋆
𝑧0,𝑝0), 𝑖 = 1,...,𝑛𝑢.
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Figure 5.6: Solution approximation using algorithm 1 for problem OCP(5.19)(𝑝) for a perturbed
initial state 𝑥 = 𝑥𝑠 + (0.2, 0.2)ᵀ. Iterate 𝑘 = 1 is the approximation after Taylor expansion,
iterate 𝑘 = 2 is the approximation after the first feasibility restoration step.
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(d) 𝑟 full discretization
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Figure 5.7: Iterations 1 to 5 of Algorithm 1 for problem OCP(5.19)(𝑝) for a perturbed initial
state 𝑥 = 𝑥𝑠 + (0.2, 0.2)ᵀ.
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Figure 5.8: Comparison of the solution approximation obtained by Algorithm 1 for single
shooting (blue) and full discretization (red) after 5 iterations. The true optimal solution for
the disturbed parameter is shown in dashed green.
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Table 5.1 shows the maximum absolute constraint error for each iteration step. The maxi-
mum absolute error is naturally smaller for FD, but the convergence rate is roughly equal.
By only considering the maximal NLP constraint error, the cumulative effect of the dis-
continuities in the state trajectory, in case of FD, is neglected. Therefore we compare the
state error resulting from the open loop application of the FD control function, as shown
in column FD (open loop). The comparison of the final state errors show that FD still
converges faster.

Table 5.1: Iteration comparison for algorithm 1 applied to OCP(5.19)(𝑝)

Iter. 𝑘
SS FD FD (open loop)

|𝛥𝑟𝑓 | |𝛥𝑣𝑓 | ‖𝛥𝑟‖2 ‖𝛥𝑣‖2 |𝛥𝑟𝑓 | |𝛥𝑣𝑓 |

1 0.153601 0.050754 0 0.036548 0.153601 0.050754
2 0.071722 0.040331 0 0.011021 0.042097 0.008368
3 0.024853 0.017433 0 0.003086 0.011835 0.002185
4 0.008285 0.007266 0 0.000916 0.003456 0.000565
5 0.002362 0.002555 0 0.000272 0.001016 0.000153
6 0.000556 0.000809 0 0.000081 0.000301 0.000043
7 0.000080 0.000221 0 0.000009 0.000024 0.000012
8 0.000014 0.000048 0 0.000007 0.000027 0.000004

Table 5.2 shows the memory consumption of the sensitivity matrices for SS and FD, de-
pending on the number of discretization points 𝑙𝑢, controls 𝑛𝑢, states 𝑛𝑥 and parameters 𝑛𝑝.
For single shooting the memory consumption grows linearly in all factors. For FD however
the grows is quadratic in 𝑙𝑢 and in 𝑙𝑥, because the amount of defect constraints increases
if discretization points are added. Though for up to several hundred discretization points
this is usually of no concern, even on embedded systems.
The largest contribution to the computational cost is to be expected from evaluating
𝑔𝑎(𝑧[𝑘],𝑝). The required number of operations are roughly equal for SS and FD as the same
total number of integration steps has to be performed. The best way to reduce memory
consumption and the required operations is obviously to reduce the amount of discretization
points.

Table 5.2: Sensitivity matrix sizes

Item SS FD
NLP variables, 𝑛𝑧 𝑛𝑢𝑙𝑢 (𝑛𝑥 + 𝑛𝑢)𝑙𝑢
Defect Constraints, 𝑛𝑑 𝑛𝑥 𝑛𝑥(𝑙𝑢 − 1)
Size d𝑧

d𝑝 , 𝑛𝑧 × 𝑛𝑝 𝑛𝑢𝑛𝑝𝑙𝑢 (𝑛𝑥 + 𝑛𝑢)𝑛𝑝𝑙𝑢
Size d𝑧

d𝑞𝐷
, 𝑛𝑧 × 𝑛𝑑 𝑛𝑢𝑛𝑥𝑙𝑢 (𝑛2

𝑥 + 𝑛𝑥 + 𝑛𝑢)(𝑙2𝑢 − 𝑙𝑢)

The conclusion we draw from this investigation is that a middle ground between the two
extremes SS and FD is the most advantageous transcription choice for the RTS algorithm.
The advantages of FD are the faster convergence, a potentially increased convergence region
and the stationary behavior of the state trajectory during the iteration sequence. The
disadvantage lies in the increased memory consumption.
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Starting from single shooting, one additional state discretization point in the middle of
the trajectory roughly cuts the error accumulation through the forward integration in half.
But the ratio between error reduction and additional memory consumption gets worse with
every additional state discretization point. The obvious strategy is hence to start with a SS
transcription and to check if the required performance envelop can be covered. Otherwise
the number of state discretization points can be increased, to achieve a more stationary
behavior of the state trajectory, and possibly enlarge the region of convergence. Concerning
the convergence speed of Algorithm 1, FD also shows a slight advantage (using the final
state error obtained by the open loop application of the control function as a comparison
basis).

5.5.2 Special Case: Linearly Perturbed and Linearly Constrained Quadratic Problem
We briefly consider the special case of a quadratic problem with linear constraints.

min 𝑧ᵀ𝐴𝑧 + 𝑏ᵀ𝑧 + 𝑐ᵀ𝑝+ 𝑑 (5.24a)
s.t. 𝐺𝑧 +𝐻𝑝+ 𝑘 = 0 (5.24b)

where 𝐴 ∈ R𝑛𝑧 ×R𝑛𝑧 , 𝐺 ∈ R𝑛𝑔 ×R𝑛𝑧 , 𝐻 ∈ R𝑛𝑔 ×R𝑛𝑝 and 𝑏, 𝑐, 𝑑, 𝑘 are vectors of appropriate
size. The objective function is at most quadratic in 𝑧 and linear in 𝑝, and the constraints are
linear in 𝑧 and 𝑝, i.e. we have a linearly perturbed, linearly constrained quadratic problem,
LPLCQP(𝑝).
We can adjust the rocket car example to match this problem type by removing the nonlinear
elements by using the coefficients 𝑒 := 0 and 𝑐𝐷 := 0. The nominal solution of the now
linear system is shown in Figure 5.9 in dark green.
For LPLCQP(𝑝) the first order Taylor expansion of the nominal solution is identical to
the exact optimal solution for a perturbed parameter. Figure 5.9 also shows a comparison
between the Taylor expansion and the true optimal solution for the initial state perturbation
(5.20). The difference between the optimal solution and the approximations based on single
shooting and full discretization is smaller than 10−15.

Corollary 5.25 (Optimal Solutions of LPLCQP(𝑝))
Let ⋆

𝑧(𝑝0) be the nominal solution of LPLCQP(𝑝0) for the nominal parameter 𝑝0 ∈ R𝑛𝑝 . The
optimal solution ⋆

𝑧(𝑝) for a perturbed parameter 𝑝 = 𝑝0 +𝛥𝑝 ∈ R𝑛𝑝 is

⋆
𝑧(𝑝) = 𝑧[1](𝑝) = ⋆

𝑧(𝑝0) + d𝑧
d𝑝(𝑝0) 𝛥𝑝.

Proof: For LPLCQP(𝑝) the necessary optimality conditions 𝐾( ⋆
𝑧(𝑝), ⋆

𝜇𝑎(𝑝),𝑝) ≡ 0 depend
linearly on 𝑧 and 𝑝 (cf. (5.7)). The differentiation (5.9) thus leads to a constant expression for
the sensitivity differentials d𝑧

d𝑝
, and all higher order derivatives of the optimality conditions

w.r.t. 𝑝 are zero. The linear dependence of (5.7) on the parameter 𝑝 can be described
exactly by a support point, i.e. ⋆

𝑧(𝑝0), and a first order derivative w.r.t. 𝑝, i.e. the parametric
sensitivity d𝑧

d𝑝
(𝑝0). Because there are no higher order terms in 𝑝 and there is no dependence

on 𝑧, the first order Taylor expansion (5.26) does not have a truncation error and is thus
identical to the true optimal solution.
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Figure 5.9: The optimal solution for the perturbed parameter (dashed light green) can be
found using the nominal solution (dark green) and the first order Taylor expansion for single
shooting (blue) or full discretization (red). The perturbed optimal solution and the Taylor
expansions are superimposed.

5.5.3 Convergence Verification at Runtime
In case that the feasibility restoration (5.17) is divergent, Algorithm 1 must be prevented
from iterating endlessly; an abort criterion is required, thus we need to determine if the
algorithm is convergent for a perturbed parameter 𝑝 = 𝑝0 +𝛥𝑝 at runtime.
The convergence progress at stage 𝑘 can be measured by a norm on the remaining constraint
error 𝑔𝑎(𝑧[𝑘](𝑝),𝑝). At the fixpoint 𝑧[∞](𝑝; 𝑝0,𝑝) it holds that⃦⃦

𝑔𝑎(𝑧[∞](𝑝; 𝑝0,𝑝),𝑝)
⃦⃦

= 0. (5.26)

The iteration sequence defined by the remaining constraint error is a contraction if and only
if ⃦⃦

𝑔𝑎(𝑧[𝑘+1](𝑝; 𝑝0,𝑝),𝑝)
⃦⃦
<

⃦⃦
𝑔𝑎(𝑧[𝑘](𝑝; 𝑝0,𝑝),𝑝)

⃦⃦
, 𝑘 > 0. (5.27)

Condition (5.27) can be used as an abort criterion, however a violation of this criterion does
not imply that iteration (5.17) is divergent. There are cases, in which Condition (5.27) is
violated for a small number of steps, but subsequently iteration (5.17) converges. In this
case the optimality error bound of Theorem (5.18) is violated, but at the fixpoint the active
constraints are still satisfied and the solution is feasible.
If feasibility is more important than optimality, such a non-optimal but feasible solution
might still be valuable. Under this premise Condition (5.27) can be heuristically relaxed,
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using a factor 𝑟 ∈]0; 1[.

𝑟
⃦⃦
𝑔𝑎(𝑧[𝑘+1](𝑝; 𝑝0,𝑝),𝑝)

⃦⃦
<

⃦⃦
𝑔𝑎(𝑧[𝑘](𝑝; 𝑝0,𝑝),𝑝)

⃦⃦
(5.28)

If the contraction criterion is relaxed, it can be beneficial to additionally consider heuristics
to identify divergent behavior. It has proven effective to monitor the defect constraints for
the state equation independently of each other. Referring to (E.4), the defects 𝑑(𝑖,𝑗) ⊂ 𝑔𝑎,
1 ≤ 𝑖 ≤ 𝑙𝑥, 1 ≤ 𝑗 ≤ 𝑛𝑥 are monitored. A norm of the defect error is computed separately
for each state equation:

𝐷[𝑘] =

⎛⎜⎝ 𝑑(1)

...
𝑑(𝑛𝑥)

⎞⎟⎠ =

⎛⎜⎝ ‖(𝑑
(1,1), ..., 𝑑(𝑙𝑥,1))ᵀ‖

...
‖(𝑑(1,𝑛𝑥), ..., 𝑑(𝑙𝑥,𝑛𝑥))ᵀ‖

⎞⎟⎠ (5.29)

In an optimistic manner iteration (5.17) is continued if at least one component of 𝐷[𝑘+1]

is smaller than in 𝐷[𝑘]. This heuristic is justified because the relative importance between
different constraint errors, i.e. the skew of the optimization problem, is unknown. The
proposed heuristic assumes that errors in the same state equation can be compared amongst
each other, but the comparison between different states is eliminated. If the norm of the
error increases simultaneously for all state equations, the divergence of (5.17) is very likely,
such that the iteration can be stopped.
In conclusion the following abort criteria are checked in each iteration:

1. The maximal number of iterations is exceeded.
2. The active set changed.
3. The relaxed contraction criterion is violated.
4. The norm of the defect errors increased in all state equations.

5.5.4 Limitations
We want to illustrate the dependence of parametric sensitivity differentials on the active
set and the consequences for the use of the real-time solution approximation scheme as a
control strategy. A closely related topic is the estimation of the region of convergence of
Algorithm (1).
Let U(𝑝0) be the neighborhood in which Theorem 5.18 holds. In the context of stability, we
would like to ascertain a priori that a perturbed parameter 𝑝 = 𝑝0 +𝛥𝑝 is in U(𝑝0). In other
words we would like to prove that a ball around 𝑝0 with radius 𝑟 > 0 is contained within
U(𝑝0). Such a proof remains an open problem. In the following we illustrate the related
difficulties by considering the conditions that limit U(𝑝0):

1. The active set 𝑎( ⋆
𝑧0,𝑝0) must remain constant.

2. The iteration sequence (5.17) must converge.

Constancy of the Active Set

The linearization of the KKT-conditions implicitly assumes that the active set of the nominal
and the perturbed optimal solutions are identical. The active set can be imagined to limit
the directions in which the optimal solution can shift as a result of perturbations. If the
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active set changes, the parametric sensitivities would change too, to adopt to the gained or
lost degrees of freedom.
Obviously only inequality constraints can cause a change of the active set. We differentiate
the following cases:

1. An inactive constraint 𝑔(𝑚)( ⋆
𝑧0,𝑝0) < 0, 𝑚 /∈ 𝑎( ⋆

𝑧0,𝑝0) becomes active.
2. An active constraint 𝑔(𝑚)( ⋆

𝑧0,𝑝0) = 0, 𝑚 ∈ 𝑎( ⋆
𝑧0,𝑝0) becomes inactive.

Note that both cases compromise the update strategy:
The first case occurs when the solution iterate 𝑧[𝑘] is moved towards and across the boundary
of an inactive inequality constraint, i.e. the iterate 𝑧[𝑘+1] becomes infeasible.
The second case can only occur, when an inequality constraint is active at the nominal
solution. An active inequality constraint becomes inactive, when the solution iterate moves
away from the boundary. The additional degrees of freedom gained from a constraint
becoming inactive are not taken into account in the next iteration, which results into a non
optimal update.

Remark 5.30 (Activation of Pure Control Constraints)
For the special case that a pure control constraint becomes active, a heuristic can be used
to possibly retain the feasibility of the approximation: The newly violating control variable
is forced to the boundary, and the sensitivity of this control variable with respect to all
perturbations is set to zero. In subsequent iterations the affected control variable remains
on the boundary. The error introduced by the fixation can possibly be mitigated through
the feasibility correction using other variables, which may still be adjusted. This method
can prevent the solution approximation from becoming infeasible, but it compromises its
optimality.

Remark 5.31 (Deactivation of Inequality Constraints)
If a constraint becomes inactive, the parametric sensitivities, i.e. the correction direction,
needs to be updated to take into account the new degree of freedom and retain optimality
of the correction direction. If however only a feasible solution is desired, the feasibility
restoration can be continued using the old, no-longer optimal correction direction.

The neighborhood in which the active set remains constant can be approximated as follows:
Let 𝑝0 = (𝑝(1)

0 , ... 𝑝
(𝑛𝑝)
0 )ᵀ and consider a perturbation in a single parameter

𝛥𝑝(𝑗) = 𝑝(𝑗) − 𝑝(𝑗)
0 , 𝑗 ∈ {1,...,𝑛𝑝}. (5.32)

The point at which 𝛥𝑝(𝑗) causes the constraint 𝑔(𝑚)(𝑧(𝑝),𝑝), 𝑚 /∈ 𝑎( ⋆
𝑧0,𝑝0) to become active

can be approximated as

𝑔(𝑚)(𝑧(𝑝),𝑝) = 0 ≈ 𝑔(𝑚)( ⋆
𝑧0,𝑝0) + d𝑔(𝑚)

d𝑝(𝑗)
( ⋆
𝑧0,𝑝0)(𝑝(𝑗) − 𝑝(𝑗)

0 ). (5.33a)

Let 𝑝(𝑚,𝑗) denote the approximative value of 𝑝(𝑗) which causes the constraint 𝑔(𝑚) to become
active. 𝑝(𝑚,𝑗) can be obtained by solving (5.33a) for 𝑝(𝑗).

𝑝(𝑚,𝑗) ≈ 𝑝(𝑗)
0 −

𝑔(𝑚)( ⋆
𝑧0,𝑝0)

d𝑔(𝑚)

d𝑝(𝑗) ( ⋆
𝑧0,𝑝0)

, 𝑚 /∈ 𝑎( ⋆
𝑧0,𝑝0), 𝑗 ∈ {1,...,𝑛𝑝}. (5.33b)
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If 𝑝(𝑗) does affect 𝑔(𝑚), that implies that d𝑔(𝑚)

d𝑝(𝑗) ( ⋆
𝑧0,𝑝0) ̸= 0.

The interval in which constraint 𝑔(𝑚) remains inactive for perturbation 𝛥𝑝(𝑗) is

𝐼 (𝑚,𝑗) ≈

⎧⎪⎨⎪⎩
[−∞; +∞] if d𝑔(𝑚)

d𝑝(𝑗) ( ⋆
𝑧0,𝑝0) = 0,

[−∞; 𝑝(𝑚,𝑗)] if 𝛥𝑝(𝑗) > 0,
[𝑝(𝑚,𝑗); +∞] if 𝛥𝑝(𝑗) < 0,

𝑚 /∈ 𝑎( ⋆
𝑧0,𝑝0), 𝑗 ∈ {1,...,𝑛𝑝}. (5.34)

Similarly a perturbation that causes an active constraint 𝑔(𝑚)( ⋆
𝑧0,𝑝0) = 0, 𝑖 ∈ 𝑎( ⋆

𝑧0,𝑝0) to
become inactive can be approximated using the parametric sensitivity of the associated
Lagrange multiplier 𝜇(𝑚)

𝑎 (𝑝0) > 0. If 𝑔(𝑚)( ⋆
𝑧0,𝑝0) is about to move away from the boundary,

the Lagrange multiplier 𝜇(𝑚)
𝑎 tends to zero.

0 ≈ 𝜇(𝑚)
𝑎 ( ⋆

𝑧0,𝑝0) + d𝜇(𝑚)
𝑎

d𝑝(𝑗)
( ⋆
𝑧0,𝑝0)(𝑝(𝑗) − 𝑝(𝑗)

0 ), 𝑚 ∈ 𝑎( ⋆
𝑧0,𝑝0), 𝑗 ∈ {1,...,𝑛𝑝} (5.35a)

𝑝(𝑚,𝑗) ≈ 𝑝(𝑗)
0 −

𝜇(𝑚)
𝑎 ( ⋆

𝑧0,𝑝0)
d𝜇

(𝑚)
𝑎

d𝑝(𝑗) ( ⋆
𝑧0,𝑝0)

. (5.35b)

If 𝑝(𝑗) does affect 𝑔(𝑚) and 𝜇(𝑚)
𝑎 , that implies that d𝜇(𝑚)

𝑎

d𝑝(𝑗) ( ⋆
𝑧0,𝑝0) ̸= 0.

The interval in which constraint 𝑔(𝑚) remains active for perturbation 𝛥𝑝(𝑗) is

𝐼 (𝑚,𝑗) ≈

⎧⎪⎨⎪⎩
[−∞; +∞] if d𝜇(𝑚)

d𝑝(𝑗) ( ⋆
𝑧0,𝑝0) = 0,

[−∞; 𝑝(𝑚,𝑗)] if 𝛥𝑝(𝑗) > 0,
[𝑝(𝑚,𝑗); +∞] if 𝛥𝑝(𝑗) < 0,

𝑚 ∈ 𝑎( ⋆
𝑧0,𝑝0), 𝑗 ∈ {1,...,𝑛𝑝} (5.36)

Let 𝐼 (𝑚,𝑗) =
[︀
𝑝(𝑚,𝑗)

− ; 𝑝(𝑚,𝑗)
+

]︀
. The interval around 𝑝(𝑗)

0 in which the active set remains un-
changed is

𝐴(𝑗)(𝑝0) =
[︁
max

𝑚
𝑝(𝑚,𝑗)

− ; min
𝑚

𝑝(𝑚,𝑗)
+

]︁
, 𝑚 ∈ {1,...,𝑛𝑔}, 𝑗 ∈ {1,...,𝑛𝑝} (5.37)

A linear approximation of the neighborhood A(𝑝0) in which the active set remains unchanged
for a perturbation 𝑝 ∈ R𝑛𝑝 is

A(𝑝0) ≈ 𝐴(1)(𝑝0)× ...× 𝐴(𝑛𝑝)(𝑝0). (5.38)

Remark 5.39 (Maximal Parameter Deviation With Constant Active Set)
For later purposes we note, that the maximal absolute deviation that 𝑝(𝑗) may have from 𝑝(𝑗)

0

before set active set changes is

𝛥
max
𝑝(𝑗) ≈ min (min

𝑚
|𝑝(𝑚,𝑗)

− − 𝑝(𝑗)
0 |, min

𝑚
|𝑝(𝑚,𝑗)

+ − 𝑝(𝑗)
0 |), 𝑚 ∈ {1,...,𝑛𝑔}, 𝑗 ∈ {1,...,𝑛𝑝}.

Active (or almost active) inequality constraints in the nominal solution should be avoided
to achieve a large correction space. Consider the active boundary arc [𝑏; 𝑐; 𝑑] in Figure 5.10.
If a perturbation pushes knot 𝑓 in direction of the boundary, a change of the active set
occurs after the margin 𝛥𝑓 . A denser discretization (i.e. adding knot 𝑒) reduces the margin
and aggravates the problem.
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a
b c d

e f

Δe Δf

Figure 5.10: Schematic of a constrained arc (b to d) and the neighboring discretization
points.

A problem transformation can be used to mitigate this problem: The problem is split into
three phases: [𝑎, 𝑏], [𝑏, 𝑐, 𝑑] and [𝑑, 𝑓 ]. Each phase has its own duration, such that the knots 𝑏
and 𝑑 can shift to the optimal entry and exit points of the boundary arc. Linkage constraints
are used to enforce continuity of the trajectory at the phase transitions, similar to multiple
shooting continuity constraints. In the transformed formulation perturbations effect the
entry and exit points, i.e. there are additional degrees of freedom, which can lead to an
increased margin before the active set change occurs. However there are also drawbacks
to this approach: The afloat sequence of multiple phases can compromise the regularity
of the problem formulation, and require a very good optimization start value to converge.
In addition the implementation effort to (automatically) support this transformation for
different types of constraints is considerable. Problems with multiple constrained arcs or a
ragged control switching structure are thus not handled well by this method.
Another difficult example are min-max or max-min problems, which are solved through the
optimization of a slack variable. Consider the following example, with 𝑥1, 𝑥2 ∈ R.

min max {𝑥1, 𝑥2}
s.t. 𝑥1 + 𝑥2 − 2 = 0

By introducing the slack variable 𝑧 ∈ R the problem can be reformulated as

min 𝑧
s.t. 𝑥1 + 𝑥2 − 2 = 0

𝑥1 − 𝑧 ≤ 0
𝑥2 − 𝑧 ≤ 0.

At the optimal solution 𝑧 = 𝑥1 = 𝑥2 = 1, all slack constraints are active. The optimization of
slack generally leads to at least one, and often multiple, active inequality constraint. Hence
slack variables should be avoided when approximating optimal solutions using parametric
sensitivities.

Convergence of the Feasibility Restoration Iteration

Büskens [Büs02] shows that Iteration (5.17) is not a contraction on the space of optimization
variables R𝑛𝑧 . But the optimization variables of each iterate 𝑧[𝑘] ∈ R𝑛𝑧 can be rearranged,
such that there exists 𝑣[𝑘], 𝑤[𝑘] with

𝑧[𝑘](𝑝) =
(︂
𝑣[𝑘]

𝑤[𝑘]

)︂
=

(︂
𝑣[𝑘]

𝑤[𝑘](𝑣[𝑘])

)︂
, (5.40)
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where 𝑤[𝑘] is an affine linear transformation. This allows a partition of the iteration and
Büskens shows that the partitioned iteration w.r.t. 𝑣[𝑘] is a contraction on the subspace of
𝑣[𝑘] if 𝛥𝑞 is sufficiently small. It is however not possible to determine the partition (5.40)
or the affine transformation 𝑤[𝑘] explicitly. The neighborhood around 𝑞0 in which the RTS
algorithm converges can only be determined numerically. In consequence the stability of a
system that is controlled by a control law based on the RTS algorithm cannot be proven
analytically. The controllable space can be estimated using numerical, stochastic methods,
e.g. Monte Carlo simulation.

5.6 Closed loop Near-Optimal Feedback in the Neighborhood of a Nominal Trajectory

In closed loop the control is determined as a function of the current state. The time measured
from the start of the closed loop process is called closed loop time 𝑡. The state trajectory
of the closed loop system as seen from the outside, i.e. including perturbations, is denoted
𝑥(𝑡). The goal of this section is to synthesize a local feedback law 𝛩, that computes a
near-optimal control 𝑢̃(𝑡) depending on the current state 𝑥(𝑡) and the current parameters
𝑝(𝑡).

⋆
𝑢(𝑡) ≈ 𝑢̃(𝑡) = 𝛩(𝑥(𝑡), 𝑝(𝑡)), 𝑡 ∈ [0; 𝑡𝑑] (5.41)

The loop is closed, if the feedback control affects the state. This is in contrast to the open
loop problem OCP(5.1)(𝑝) in which the control function for the entire process is determined
ahead of time.
A closed loop is said to be ideal, if the feedback control affects the state without delay. We
consider the ideal closed loop optimal feedback problem at discrete times 𝑡(𝑖) with

𝑇𝑐𝑙 := {𝑡(1), ..., 𝑡(𝑖), ..., 𝑡(𝑙𝑇 )}, 𝑡(1) = 0, 𝑡(𝑖) < 𝑡(𝑖+1), 𝑡(𝑙𝑇 ) < 𝑡𝑑. (5.42)

The determination of the instantaneous closed loop optimal control ⋆
𝑢(𝑡(𝑖)) requires to solve

an open loop OCP at each 𝑡(𝑖) ∈ 𝑇𝑐𝑙. Therefore we distinguish between the closed loop
time 𝑡 ∈ [0; 𝑡𝑑] and the problem specific open loop time 𝑡𝑖 ∈ [0; 𝑡𝑖,𝑔𝑜] for the subproblem
on the interval [𝑡(𝑖); 𝑡𝑑]. The following relations hold between closed loop time and problem
specific open loop time:

𝑡𝑖(𝑡(𝑖)) := 0 (5.43a)
𝑡𝑖,𝑔𝑜(𝑡(𝑖)) := 𝑡𝑑 − 𝑡(𝑖) (5.43b)

The open loop time 𝑡𝑖 ∈ [0; 𝑡𝑖,𝑔𝑜] is normalized to 𝜏𝑖 ∈ [0; 1], because the remaining time-to-
go 𝑡𝑖,𝑔𝑜 is free.

𝜏𝑖 := 𝑡𝑖

𝑡𝑖,𝑔𝑜

, 𝜏𝑖 ∈ [0; 1] (5.44)
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The OCP to be solved at 𝑡(𝑖) is

min
𝑢,𝑡𝑔𝑜

𝐽(𝑥(𝜏𝑖),𝑢(𝜏𝑖),𝑡𝑖,𝑔𝑜,𝑝(𝜏𝑖)) = 𝑚(𝑥(1),𝑡𝑖,𝑔𝑜,𝑝(𝜏𝑖)) + 𝑡𝑖,𝑔𝑜

ˆ 1

0
𝑙(𝑥(𝜏𝑖),𝑢(𝜏𝑖),𝑝(𝜏𝑖)) d𝜏𝑖 (5.45a)

s.t. 𝑥̇ = 𝑡𝑖,𝑔𝑜𝑓(𝑥(𝜏𝑖),𝑢(𝜏𝑖),𝑝(𝜏𝑖)) (5.45b)
𝑥(0) = 𝑥(𝑡(𝑖)) (5.45c)
𝑝(0) = 𝑝(𝑡(𝑖)) (5.45d)

𝜓𝑓 (𝑥(1),𝑝(𝜏𝑖)) = 0 (5.45e)
𝑐(𝑥(𝜏𝑖),𝑢(𝜏𝑖),𝑝(𝜏𝑖)) ≤ 0. (5.45f)

In contrast to the open loop view we now consider that the parameter may change during
the process, i.e. 𝑝(𝑡) depends on time. We assume that 𝑥(𝑡(𝑖)) and 𝑝(𝑡(𝑖)) are known at 𝑡(𝑖),
but not in advance.
Note that the initial condition of OCP(5.45) is different from the initial condition of OCP(5.1).
In the open loop problem the initial state may be free, whereas in closed loop the initial state
is determined by the closed loop state. Analogously the initial condition of 𝑝 is determined
by 𝑝(𝑡(𝑖)).
We consider the closed loop state as a parameter and denote OCP(5.45) at 𝑡(𝑖) as OCP(5.45)(𝑝(𝑖))
with the joined parameter vector

𝑝(𝑖) = 𝑝(𝑡(𝑖)) :=
(︂
𝑝(𝑡(𝑖))
𝑥(𝑡(𝑖))

)︂
, 𝑡(𝑖) ∈ 𝑇𝑐𝑙. (5.46)

If we consider any perturbations on the system, 𝑝(𝑡) is unknown for 𝑡 > 𝑡(𝑖) at time 𝑡(𝑖). But
for the special case that there are no perturbations during closed loop execution, the closed
loop trajectory matches the optimal open loop trajectory and the closed loop parameter
matches the nominal parameter. To obtain the nominal trajectory we solve the open loop
problem OCP(5.1)(𝑝0) for the nominal parameter value 𝑝0. Let ⋆

𝑥(𝑡; 𝑝0), 𝑡 ∈ [0;
⋆

𝑡𝑑] be the
optimal open loop trajectory. If there are no perturbations in the closed loop system, we
can specify the closed loop trajectory 𝑥(𝑡) ahead of time:

𝑥(𝑡,𝑝(𝑡)) = ⋆
𝑥(𝑡; 𝑝0), 𝑡 ∈ [0; 𝑡𝑑], 𝑡𝑑 =

⋆

𝑡𝑑. (5.47)

Likewise we can specify the parameter ahead of time:

𝑝(𝑡) = 𝑝0, 𝑡 ∈ [0; 𝑡𝑑]. (5.48)

The control problems that arise in unperturbed closed loop are thus

min
𝑢,𝑡𝑖,𝑔𝑜

𝐽(𝑥(𝜏𝑖),𝑢(𝜏𝑖),𝑡𝑖,𝑔𝑜,𝑝0) = 𝑚(𝑥(1),𝑡𝑖,𝑔𝑜,𝑝0) + 𝑡𝑖,𝑔𝑜

ˆ 1

0
𝑙(𝑥(𝜏𝑖),𝑢(𝜏𝑖),𝑝0) d𝜏𝑖 (5.49a)

s.t. 𝑥̇ = 𝑡𝑖,𝑔𝑜𝑓(𝑥(𝜏𝑖),𝑢(𝜏𝑖),𝑝0) (5.49b)
𝑥(0) = ⋆

𝑥(𝑡(𝑖); 𝑝0) (5.49c)
𝑝(0) = 𝑝0 (5.49d)

𝜓𝑓 (𝑥(1),𝑝0) = 0 (5.49e)
𝑐(𝑥(𝜏𝑖),𝑢(𝜏𝑖),𝑝0) ≤ 0. (5.49f)
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The nominal parameters for these control problems are

𝑝(𝑖)
0 = 𝑝0(𝑡(𝑖)) :=

(︂
𝑝0

⋆
𝑥(𝑡(𝑖); 𝑝0)

)︂
, 𝑡(𝑖) ∈ 𝑇𝑐𝑙. (5.50)

Note that in the nominal problems OCP(5.49)(𝑝(𝑖)
0 ) the parameter 𝑝0 is constant, but the

initial state still depends on time.
The proposed feedback law is based on the parametric sensitivity analysis of the problems
OCP(5.49)(𝑝0(𝑡(𝑖))). In an offline phase, before closed loop, we obtain the parametric sensi-
tivities of OCP(5.49)(𝑝0(𝑡(𝑖))), for all 𝑡(𝑖) ∈ 𝑇𝑐𝑙. In the online phase we use the precomputed
sensitivities to execute the RTS algorithm to approximate a solution of the control problem
for the disturbed closed loop state 𝑥 and the disturbed parameter 𝑝. In the following the
strategy is outlined, details are discussed in the following sections.

Offline Preparation Phase
1. Solve OCP(5.1)(𝑝0) open loop via direct optimization. Let

⋆

𝑡𝑑 be the optimal open loop
process duration. Denote the normalized time with respect to the full length process
as

𝜏 := 𝑡
⋆

𝑡𝑑

, 𝑡 ∈ [0;
⋆

𝑡𝑑]. (5.51)

Furthermore let ⋆
𝑥(𝜏 ; 𝑝0), 𝜏 ∈ [0; 1] be the nominal open loop trajectory of OCP(5.1)(𝑝0).

2. Define the nominal closed loop system OCP(5.49)(𝑝0(𝜏 )) having the nominal parameter

𝑝(𝜏 )0 :=
(︂

𝑝0
⋆
𝑥(𝜏 ; 𝑝0)

)︂
, 𝜏 ∈ [0; 1]. (5.52)

3. Choose a grid

𝑇𝑛𝑜𝑚 := {𝜏 (1), ..., 𝜏 (𝑖), ..., 𝜏 (𝑙𝑝)}, 𝜏 (1) = 0, 𝜏 (𝑖) < 𝜏 (𝑖+1), 𝜏 (𝑙𝑝) < 1, (5.52a)

and obtain the set

𝑃𝑛𝑜𝑚 = {𝑝0(𝜏 (1)), ..., 𝑝0(𝜏 (𝑙𝑝))} = {𝑝(1)
0 , ..., 𝑝

(𝑙𝑝)
0 }. (5.52b)

4. For each 𝑝(𝑖)
0 ∈ 𝑃𝑛𝑜𝑚

a) OCP(5.49)(𝑝(𝑖)
0 ) has the initial condition

𝑥(0) = ⋆
𝑥(𝜏 (𝑖),𝑝0). (5.52c)

𝑝(0) = 𝑝0 (5.53)

Note that the optimal solution of OCP(5.49)(𝑝(1)
0 ) is identical to the optimal solu-

tion of OCP(5.1)(𝑝0).
b) Transcribe OCP(5.49)(𝑝(𝑖)

0 ) into a nonlinear program NLP(𝑝(𝑖)
0 ).

c) Consider parameters 𝑞 ∈ R𝑛𝑔 , with 𝑞0 = 0, that enter the constraint function
𝑔(𝑧,𝑝) linearly. Let the augmented problem be NLP(𝑝(𝑖)

0 ,𝑞0).
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d) Solve NLP(𝑝(𝑖)
0 ,𝑞0) to obtain the nominal solution

⋆
𝑧(𝑝(𝑖)

0 ,𝑞0). (5.53a)

e) Obtain the parametric sensitivity of ⋆
𝑧(𝑝(𝑖)

0 ,𝑞0) with respect to 𝑝(𝑖)
0 and 𝑞0.

d𝑧
d𝑝(𝑝(𝑖)

0 ,𝑞0),
d𝑧
d𝑞 (𝑝(𝑖)

0 ,𝑞0). (5.53b)

Online Feedback Phase

1. At closed loop time 𝑡 receive the input: 𝑝 =
(︂
𝑝
𝑥

)︂
.

2. Set

𝑝(𝑟)
0 = arg min

𝑝
(𝑖)
0

⃦⃦
𝑝− 𝑝(𝑖)

0

⃦⃦
, 𝑝(𝑖)

0 ∈ 𝑃𝑛𝑜𝑚, (5.53c)

where ‖·‖ is a norm on R𝑛𝑝 .
3. Set

𝛥𝑝 = 𝑝− 𝑝(𝑟) (5.53d)

4. Execute the RTS algorithm with the arguments

𝛥𝑝,
⋆
𝑧(𝑝(𝑟),𝑞0),

d𝑧
d𝑝(𝑝(𝑟),𝑞0),

d𝑧
d𝑞 (𝑝(𝑟),𝑞0). (5.53e)

and obtain the adapted solution 𝑧(𝑝).
5. Extract the control sequence 𝑢̃(𝑝) from 𝑧(𝑝) and use 𝑢̃ as control input. Goto 1.

5.6.1 An Advantageous Norm

In the online phase the control law receives the perturbed parameter 𝑝 ∈ R𝑛𝑝 as input. To
apply the RTS algorithm we must determine a reference point 𝑝(𝑟)

0 ∈ 𝑃𝑛𝑜𝑚 that defines the
perturbation direction 𝛥𝑝 = 𝑝− 𝑝(𝑟)

0 .
Let the RTS algorithm converge on the neighborhoods 𝑁 = {N(1), ...,N(𝑙𝑝)}. Then 𝑝(𝑟)

0 must
be chosen such that 𝑝 ∈ N(𝑟) ∈ 𝑁 . As a secondary goal 𝑝(𝑟)

0 should be as close to 𝑝 as
possible, because the solution approximation error increases with ‖𝛥𝑝‖. This leads to the
constrained optimization problem

𝑝(𝑟)
0 = arg min

𝑝
(𝑖)
0 ∈𝑃𝑛𝑜𝑚

⃦⃦
𝑝− 𝑝(𝑖)

0

⃦⃦
(5.54a)

s.t. 𝑝 ∈ N(𝑟), N(𝑟) ∈ 𝑁. (5.54b)

Problem (5.54) only has a solution for

𝑝 ∈ N =
𝑙𝑝⋃︁
𝑖

N(𝑖) ⊂ R𝑛𝑝 . (5.55)
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and is hard to solve efficiently, because the only known method to evaluate the constraint
(5.54b) is to apply the RTS algorithm at 𝑝(𝑟)

0 .
Problem (5.54) can be solved by applying the RTS algorithm for all 𝑝(𝑖)

0 ∈ 𝑃𝑛𝑜𝑚 and selecting
the convergent solution with minimal ‖𝛥𝑝(𝑖)‖. The space that is controllable by 𝛩(𝑝) is
thus

C(𝛩(𝑝)) = N. (5.56)

This brute force approach however is computationally infeasible for real-time feedback.
To achieve a sufficient reduction of the required computations the reference point must be
selected without evaluating (5.54b). An unconstrained selection of 𝑝(𝑟)

0 however results in
a reduction of the controllable space, because it is possible that 𝑝(𝑟)

0 , 𝑝 /∈ N(𝑟), although
𝑝 ∈ N(𝑗), 𝑗 ̸= 𝑟.
One approach to select 𝑝(𝑟)

0 is to use an independent variable, e.g. the closed loop time 𝑡.
Under the assumptions that the temporal displacement between 𝑝 and 𝑝0 is low, and that
the closed loop duration is similar to

⋆

𝑡𝑑, the reference index can be defined as

𝑟 := arg min
𝑖

⃒⃒⃒⃒
𝜏 (𝑖) − 𝑡

⋆

𝑡𝑑

⃒⃒⃒⃒
, 𝜏 (𝑖) ∈ 𝑇𝑛𝑜𝑚. (5.57)

The feedback law then also depends on time, i.e. 𝛩(𝑝,𝑡) and the controllable space is a
subset of N, determined by the accuracy of the time collocation between the closed loop
and the open loop solution.
We suggest the following alternative approach: If hypothetically we could find a norm such
that

𝑝(𝑟)
0 = arg min

𝑝
(𝑖)
0 ∈𝑃𝑛𝑜𝑚

⃦⃦
𝑝− 𝑝(𝑖)

0

⃦⃦
=⇒ 𝑝 ∈ N(𝑟), 𝑝 ∈ N (5.58)

the constraint (5.54b) would automatically be satisfied. Unfortunately for non convex N(𝑖)

such a norm does not exist, but it is possible to find an approximation.
If the parameters enter the nominal optimal solution nonlinearly, or if the parameters are of
different scale, N(1), ...,N(𝑙𝑝) are skewed in standard Euclidean space. This is illustrated in
Figure 5.11 in a two dimensional example. Consequentially a ball resulting from the stan-
dard Euclidean norm (blue) is not a good convex approximation of the skewed convergence
neighborhoods; the purple striped area is erroneously mapped to 𝑝(1)

0 and the area striped
in brown is erroneously mapped to 𝑝(2)

0 . In these areas a feasible solution approximation is
attainable, but it is not found by 𝛩(𝑝) because the wrong reference point is chosen. The
reference determination can be improved by using a weighted Euclidean norm

‖𝑝‖
𝑊

=
√︀
𝑝ᵀ𝑉 ᵀ𝑉 𝑝 =

√︀
𝑝ᵀ𝑊𝑝, (5.59)

that takes into account the extend of the convergence neighborhoods in different directions.
For the weighted norm (red) the areas striped in green are mapped correctly, but the orange
area is now erroneously mapped to 𝑝(1)

0 . Obviously without knowledge of the intersection of
N(1),N(2) an error free separation is not possible.
The positive definite 𝑛𝑝 × 𝑛𝑝 transformation matrix 𝑊 defines the scaling and rotation
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Figure 5.11: Nearest neighbor functions based on differently weighted Euclidean distances.

operations which map a hyper-sphere in unweighted euclidean space into an hyper-ellipsoid.
In machine learning and statistics the matrix 𝑊 is often chosen as the covariance of the data
set, centered at its mean (Mahalanobis distance). Unfortunately in our case the means and
covariances of N(1), ...,N(𝑙𝑝) are unknown, such that we cannot use this approach directly,
but we can apply a similar idea.
We approximate N(𝑖) ∈ 𝑁 with a ball B(𝑖)

‖·‖
𝑊 (𝑖)

in the norm ‖·‖
𝑊 (𝑖) . 𝑊 (𝑖) is a diagonal matrix

with the diagonal elements

𝑤(𝑗,𝑗) :=

⎧⎨⎩
1

𝛥
max

𝑝(𝑗) if 𝛥
max
𝑝(𝑗) ̸=∞

𝑐 if 𝛥
max
𝑝(𝑗) =∞

, 0 < 𝑐 < min
𝑗

1
𝛥

max
𝑝(𝑗)

, 𝑗 ∈ {1, ..., 𝑛𝑝}. (5.60)

𝛥
max
𝑝(𝑗) is the maximal distance that the 𝑗-th component of 𝑝(𝑖)

0 may change in OCP(5.49)(𝑝(𝑖)
0 )

without causing a change of the active set, as determined by (5.39). The diagonal elements
define the scaling of the coordinate axes. For an accurate approximation of N(𝑖) we also
require the off diagonal elements (or covariances) that specify the rotation of the (hyper-)
ellipse we use to approximate N(𝑖). The covariances must be determined empirically or
through numerical tests.
We can measure the distance of a fixed parameter 𝑝 to a nominal parameter 𝑝(𝑖)

0 ∈ 𝑃𝑛𝑜𝑚

using any of the norms 𝑊 (𝑖). To find the closest nominal parameter we must compare these
distances, which requires to measure in a common norm, i.e. the comparison must take
place in a common normed vector space (R𝑛𝑝 , ‖·‖

𝑊
).

The only feasible option is to assume that 𝑊 (𝑖+1) ∼ 𝑊 (𝑖), for all 𝑖 ∈ {1,...,𝑙𝑝 − 1}, meaning
we assume that the dominate skew of all N(𝑖) ∈ 𝑁 is similar. If this assumption is not
justified, choosing 𝑝𝑟

0 based on an independent variable maybe the better option. If the
assumption holds we can define 𝑊 as mean of the normalized 𝑊 (𝑖).

𝑊 := 1
𝑙𝑝

(︂
𝑊 (1)

‖trace(𝑊 (1))‖2

+ . . .+ 𝑊 (𝑙𝑝)

‖trace(𝑊 (𝑙𝑝))‖2

)︂
. (5.61)
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Choosing 𝑝(𝑟)
0 based on the norm ‖·‖

𝑊
is independent of time and adaptive to perturbations,

because the choice of the reference point takes into account the entire perturbation vector.
This can lead to an increase of the controllable space compared to time tracking under
certain conditions:
Consider the convex approximations B(1), ...,B(𝑙𝑝) of N(1), ...,N(𝑙𝑝) in weighted Euclidean
space (R𝑛𝑝 , ‖·‖

𝑊
). Figure 5.12a illustrates that even with an adequate norm the convergence

of the RTS algorithm on the balls B(1),B(2) is not sufficient for 𝛩(𝑝) to be convergent on
B(1) ∪B(2), as indicated by the black striped area.

(a) (b)

Figure 5.12: Nearest neighbor pitfalls: (a) Insufficient discretization; (b) Trajectory loop.

But it can be easily verified geometrically, that the nearest neighbor is chosen correctly if
𝑝(𝑖−1)

0 ∈ B(𝑖), for all 𝑖 ∈ {2, ..., 𝑙𝑝} and 𝑝(𝑖+1)
0 ∈ B(𝑖), 𝑖 ∈ {1, ..., 𝑙𝑝 − 1}, i.e. the balls must

not only overlap, but each ball must contain the center of it’s neighbors. Such a dense
discretization is indicated in Figure 5.12b, however the nearest neighbor search can still fail
if the trajectory contains a loop. For such cases the control space does obviously not include
the miss matched subset.
The considerations of this section are summarized in the following corollary.

Corollary 5.62 (Near Optimal Feedback in the Neighborhood of a Nominal Trajectory)
Let ⋆

𝑥(𝜏 ; 𝑝0), 𝜏 ∈ [0; 1] be the nominal trajectory of the open loop problem OCP(5.1)(𝑝0). Let

𝑇𝑛𝑜𝑚 := {𝜏 (1), ..., 𝜏 (𝑖), ..., 𝜏 (𝑙𝑝)}, 𝜏 (1) = 0, 𝜏 (𝑖) < 𝜏 (𝑖+1), 𝜏 (𝑙𝑝) < 1, (5.63)

𝑝(𝑖)
0 :=

(︂
𝑝0

⋆
𝑥(𝜏 (𝑖); 𝑝0)

)︂
, 𝜏 (𝑖) ∈ 𝑇𝑛𝑜𝑚. (5.64)

Let OCP(5.49)(𝑝(𝑖)
0 ) be the nominal closed loop subproblem at 𝜏 (𝑖) ∈ 𝑇𝑛𝑜𝑚. Let OCP(5.49)(𝑝(𝑖)

0 )
have the discretized form NLP(𝑝(𝑖)

0 ,𝑞0) with the optimal solution ⋆
𝑧(𝑝(𝑖)

0 ,𝑞0) and the parametric
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sensitivities d𝑧

d𝑝
(𝑝(𝑖)

0 ,𝑞0) and d𝑧

d𝑞
(𝑝(𝑖)

0 ,𝑞0). Let the following assumptions hold:
A1: (Convergence of the RTS algorithm)

Given ⋆
𝑧(𝑝(𝑖)

0 ,𝑞0), d𝑧

d𝑝
(𝑝(𝑖)

0 ,𝑞0), d𝑧

d𝑞
(𝑝(𝑖)

0 ,𝑞0) let the RTS algorithm converge to a near op-
timal solution of NLP(𝑝,𝑞0) on the ball B(𝑖)

‖·‖.
A2: (Norm)

Let ‖·‖ have the property

𝑝(𝑟)
0 = arg min

𝑝
(𝑖)
0 ∈𝑃𝑛𝑜𝑚

⃦⃦
𝑝− 𝑝(𝑖)

0

⃦⃦
=⇒ 𝑝 ∈ B(𝑟), 𝑝 ∈

𝑙𝑝⋃︁
𝑖

B(𝑖). (5.65)

𝛩(𝑝) is a near optimal feedback law for OCP(5.1)(𝑝) on the controllability space

C =
𝑙𝑝⋃︁
𝑖

B(𝑖). (5.66)

Proof: If 𝑝 ∈ C, 𝑝 is also in one or more balls B(1), ...,B(𝑙𝑝). Given a parameter 𝑝 = (𝑝,𝑥)
(5.53c) determines the nearest nominal parameter 𝑝(𝑟)

0 with convergence neighborhood B(𝑟),
such that 𝑝 ∈ B(𝑟) (A2). Equation (5.53e) executes the RTS algorithm with the arguments
𝛥𝑝 = 𝑝− 𝑝(𝑟)

0 , ⋆
𝑧(𝑝(𝑟)

0 ,𝑞0), d𝑧

d𝑝
(𝑝(𝑟)

0 ,𝑞0), d𝑧

d𝑞
(𝑝(𝑟)

0 ,𝑞0) for which the algorithm approximates a near
optimal solution of NLP(𝑝,𝑞0) (A1). The NLP solution contains a discrete near optimal
control function for OCP(5.49)(𝑝).

5.6.2 Data Reduction Through Dynamic Programming

It is obvious that the problems OCP(5.49)(𝑝(𝑖)
0 ), 𝑝(𝑖)

0 ∈ 𝑃𝑛𝑜𝑚 are subproblems of OCP(5.49)(𝑝(1)
0 ).

In addition the objective function of OCP(5.49)(𝑝(1)
0 ) is separable, thus the Principle of Opti-

mality 4.28 can be applied to reduce the amount of data required to facilitate 𝛩(𝑝):
The optimal solution of OCP(5.49)(𝑝(1)

0 ) on the interval [𝜏 (𝑖); 1] is identical to the optimal
solution of OCP(5.49)(𝑝(𝑖)

0 ). The transformation from normalized nominal open loop time
𝜏 ∈ [𝜏 (𝑖); 1] to normalized problem specific time 𝜏𝑖 ∈ [0; 1] is

𝜏𝑖(𝜏 ) = 𝜏 − 𝜏 (𝑖)

1− 𝜏 (𝑖)
, 𝜏𝑖 ∈ [0; 1], 𝜏 ∈ [𝜏 (𝑖); 1] (5.67)

The reverse transformation is

𝜏 (𝜏𝑖) = 𝜏 (𝑖) + (1− 𝜏 (𝑖))𝜏𝑖, 𝜏𝑖 ∈ [0; 1], 𝜏 ∈ [𝜏 (𝑖); 1]. (5.68)

The optimal solution of subproblem OCP(5.49)(𝑝(𝑖)
0 ) can be obtained from the optimal solution

of OCP(5.49)(𝑝(1)
0 ) as

⋆
𝑢𝑖(𝜏𝑖,𝑝

(𝑖)
0 ) = ⋆

𝑢1(𝜏 (𝜏𝑖),𝑝(1)
0 ), 𝜏𝑖 ∈ [0; 1], 1 ≤ 𝑖 ≤ 𝑙𝑝, (5.69a)

⋆
𝑥𝑖(𝜏𝑖,𝑝

(𝑖)
0 ) = ⋆

𝑥1(𝜏 (𝜏𝑖),𝑝(1)
0 ), 𝜏𝑖 ∈ [0; 1], 1 ≤ 𝑖 ≤ 𝑙𝑝. (5.69b)
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The relationship between the problem specific nominal local time-to-go and the nominal
time of the full process is

⋆

𝑡𝑖,𝑔𝑜 =
⋆

𝑡1,𝑔𝑜 − 𝑡(𝑖). (5.70)

Hence only the optimal solution of OCP(5.49)(𝑝(1)
0 ) is required for 𝛩(𝑝). The optimal solution

of OCP(5.49)(𝑝(1)
0 ) is in turn identical to the solution of the nominal open loop problem

OCP(5.1)(𝑝0).
It is important to note, that the Principle of Optimality does not apply to the parametric
sensitivities, i.e. the optimal solution derivative. This becomes clear by considering that the
relationship between an infinitesimally small change in the initial state and the attainable
optimal value is described by the Hamilton-Jacobi-Bellman partial differential equation
(4.36). The parametric sensitivity of a single open loop solution does not contain the
information to approximate the entire extremal field described by a solution of the HJB
equation, but only the part in the neighborhood of the open loop initial condition. The
parametric sensitivities of all subproblems OCP(5.49)(𝑝(𝑖)

0 ) are required to approximate a
solution to the HJB equation locally around the nominal trajectory.
Figure 5.13 shows the parametric sensitivity w.r.t. perturbations in the initial state and the
mass computed for the different subproblems of the rocket car problem, OCP(5.19)(𝑝0). For
this comparison the parametric sensitivities of all subproblems are plotted in the normalized
open loop time 𝜏 ∈ [0; 1].
The optimal value as function of the initial state (as defined in dynamic programming)
can be approximated around the initial state of OCP(5.49)(𝑝(𝑖)

0 ) by using the parametric
sensitivity of the objective function:

d𝑓
d𝑝 ( ⋆

𝑧(𝑝(𝑖)
0 ),𝑝(𝑖)

0 ) = ∂𝑓

∂𝑧
( ⋆
𝑧(𝑝(𝑖)

0 ),𝑝(𝑖)
0 )d𝑧

d𝑝(𝑝(𝑖)
0 ) + ∂𝑓

∂𝑝
( ⋆
𝑧(𝑝(𝑖)

0 ),𝑝(𝑖)
0 ). (5.71)

Equation (5.71) contains the sensitivity of the objective function w.r.t. to the initial state,
which is a first order approximation of the optimal value gradient:

∇𝑥𝑠
𝑉 ( ⋆
𝑥(𝜏 (𝑖),𝑝0)) ≈

d𝑓
d𝑥𝑠

(𝑝(𝑖)
0 ), 𝜏 (𝑖) ∈ 𝑇𝑛𝑜𝑚, 𝑝(𝑖)

0 ∈ 𝑃𝑛𝑜𝑚. (5.72)

The use of the parametric sensitivities of all OCP(5.49)(𝑝(𝑖)
0 ) allows an approximation of the

optimal value in the neighborhood of the nominal open loop trajectory ⋆
𝑥(𝜏 ; 𝑝0), 𝜏 ∈ [0; 1]

as

𝑉 (𝑝) ≈ 𝑓( ⋆
𝑧(𝑝(𝑟)),𝑝(𝑟)) + d𝑓

d𝑝 ( ⋆
𝑧(𝑝(𝑟)),𝑝(𝑟))

⎡⎢⎢⎢⎣
(︂
𝑝
𝑥

)︂
⏟ ⏞ 

𝑝

−
(︂

𝑝0
⋆
𝑥(𝜏 (𝑟),𝑝0)

)︂
⏟  ⏞  

𝑝(𝑟)

⎤⎥⎥⎥⎦ , (5.73)

if 𝑝(𝑟) is obtained according to (5.53c).
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Figure 5.13: Parametric sensitivity of the control, position and velocity against perturbations
in the mass and the initial position and velocity at different points of the optimal trajectory of
OCP(5.19)(𝑝0).
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5.6.3 Interpolation of Parametric Sensitivities
The number of discrete initial conditions that need to be analyzed to facilitate 𝛩(𝑝) can be
reduced by interpolating the sensitivity differentials between neighboring initial conditions.
Depending on the curvature of the sensitivity differentials, i.e. the required interpolation
order, this achieves a reduction of the memory consumption in trade-off for additional CPU
load caused by the interpolation.

Interpolation with Respect to Time

Let d𝑧

d𝑝
(𝑝(𝑖)

0 ) be the parametric sensitivity of NLP(𝑝(𝑖)
0 ), cf. (5.53b). d𝑧

d𝑝
(𝑝(𝑖)

0 ) contains the
sensitivity of the control variables on the grid 𝑇𝑢, and the sensitivity of the state variables
on the grid 𝑇𝑥:

d𝑢(𝑗)

d𝑝(𝑟)
(𝑝(𝑖)

0 ) =

⎛⎜⎝
d𝑢(𝑗)[𝜏 (1)]

d𝑝(𝑟) (𝑝(𝑖)
0 )

...
d𝑢(𝑗)[𝜏 (𝑙𝑢)]

d𝑝(𝑟) (𝑝(𝑖)
0 )

⎞⎟⎠ 1 ≤ 𝑗 ≤ 𝑛𝑢, 1 ≤ 𝑟 ≤ 𝑛𝑝, 𝜏 (𝑖) ∈ 𝑇𝑢 (5.74a)

d𝑥(𝑗)

d𝑝(𝑟)
(𝑝(𝑖)

0 ) =

⎛⎜⎝
d𝑥(𝑗)[𝜏 (1)]

d𝑝(𝑟) (𝑝(𝑖)
0 )

...
d𝑥(𝑗)[𝜏 (𝑙𝑥)]

d𝑝(𝑟) (𝑝(𝑖)
0 )

⎞⎟⎠ 1 ≤ 𝑗 ≤ 𝑛𝑥, 1 ≤ 𝑟 ≤ 𝑛𝑝, 𝜏 (𝑖) ∈ 𝑇𝑥 (5.74b)

d𝑡𝑑

d𝑝(𝑟)
(𝑝(𝑖)

0 ) 1 ≤ 𝑗 ≤ 𝑛𝑝 (5.74c)

The convergence of the direct solution to the PMP solution, for an infinitesimally small
discretization step size, implies the convergence of the direct solution derivative to a piece-
wise continuous function that is an approximation of the sensitivities obtained with respect
to the PMP conditions. This justifies the interpolation of the sensitivity differentials be-
tween the discretization points of the control and state functions. For each initial condition
𝑝(𝑖)

0 ∈ 𝑃𝑛𝑜𝑚 we approximate the PMP sensitivities as

d𝑢(𝑗)

d𝑝(𝑟)
(𝜏 ,𝑝(𝑖)

0 )
⃒⃒⃒⃒

𝜏∈[0; 1]

≈ interp
𝜏 (𝑖)

(︂
d𝑢(𝑗)

d𝑝(𝑟)
(𝜏 (𝑖),𝑝(𝑖)

0 )
)︂
, 𝜏 (𝑖) ∈ 𝑇𝑢, 1 ≤ 𝑗 ≤ 𝑛𝑢, 1 ≤ 𝑟 ≤ 𝑛𝑝(5.75a)

d𝑥(𝑗)

d𝑝(𝑟)
(𝜏 ,𝑝(𝑖)

0 )
⃒⃒⃒⃒

𝜏∈[0; 1]

≈ interp
𝜏 (𝑖)

(︂
d𝑥(𝑗)

d𝑝(𝑟)
(𝜏 (𝑖),𝑝(𝑖)

0 )
)︂
, 𝜏 (𝑖) ∈ 𝑇𝑥, 1 ≤ 𝑗 ≤ 𝑛𝑥, 1 ≤ 𝑟 ≤ 𝑛𝑝.(5.75b)

If the solution contains corners or points of discontinuity, the interpolation is admissible on
each continuously differentiable arc.

Interpolation with Respect to the Initial Condition

The dependency of d𝑧

d𝑝
(𝑝(1)

0 ), ..., d𝑧

d𝑝
(𝑝𝑙𝑝

0 ) on the initial condition is expressed as dependency
on the normalized nominal open loop time 𝜏 ∈ [0; 1] via (5.52). We can thus interpolate
between sensitivities of neighboring initial conditions, 𝑝0(𝜏 (𝑖)) and 𝑝0(𝜏 (𝑖+1)). The interpo-
lation variable for the initial condition is denoted 𝜏 𝑠 ∈ [0; 1]. For all discretization points
𝜏 (𝑖) ∈ 𝑇𝑢 of the control function, and for all discretization points of the state functions
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𝜏 (𝑖) ∈ 𝑇𝑥, and for the time-to-go, we can approximate the change of the sensitivities be-
tween initial conditions 𝑝(𝑖)

0 ∈ 𝑃𝑛𝑜𝑚 as

d𝑢(𝑗)

d𝑝(𝑟)
(𝜏 (𝑖),𝑝0(𝜏 𝑠))

⃒⃒⃒⃒
𝜏 𝑠∈[0; 1]

≈ interp
𝑝0(𝜏 (𝑖))

(︂
d𝑢(𝑗)

d𝑝(𝑟)
(𝜏 (𝑖),𝑝0(𝜏 (𝑖))

)︂
, 𝜏 (𝑖) ∈ 𝑇𝑢, 1 ≤ 𝑗 ≤ 𝑛𝑢, (5.76a)

d𝑥(𝑗)

d𝑝(𝑟)
(𝜏 (𝑖),𝑝0(𝜏 𝑠))

⃒⃒⃒⃒
𝜏 𝑠∈[0; 1]

≈ interp
𝑝0(𝜏 (𝑖))

(︂
d𝑥(𝑗)

d𝑝(𝑟)
(𝜏 (𝑖),𝑝0(𝜏 (𝑖))

)︂
, 𝜏 (𝑖) ∈ 𝑇𝑥, 1 ≤ 𝑗 ≤ 𝑛𝑥 (5.76b)

d𝑡𝑔𝑜

d𝑝(𝑟)
(𝑝0(𝜏 𝑠))

⃒⃒⃒⃒
𝜏 𝑠∈[0; 1]

≈ interp
𝑝0(𝜏 (𝑖))

(︂
d𝑡𝑔𝑜

d𝑝(𝑟)
(𝑝0(𝜏 (𝑖)))

)︂
. (5.76c)

Sensitivity Surface Interpolation

The interpolation with respect to time and the initial condition is combined into a 2D surface
interpolation, by transforming the sensitivities of all problems OCP(5.49)(𝑝(𝑖)

0 ), 𝑝(𝑖)
0 ∈ 𝑃𝑛𝑜𝑚 to

the normalized nominal open loop time (via (5.68)). Then the sensitivities can be arranged
on a common 2D grid. This grid can be used as input for a surface interpolation algorithm,
denoted as 𝛯𝜏 ,𝜏 𝑠

(·), 𝜏 ∈ [𝜏 𝑠; 1], 𝜏 𝑠 ∈ [0; 1]. The surface fitting is performed offline, as last
step of the preparation phase. Depending on the choice of interpolation algorithm the data
basis may change in size and structure. We assume that the interpolation is exact at the
data points.

d𝑢(𝑗)

d𝑝(𝑟)
(𝜏 ,𝜏 𝑠) ≈ 𝛯𝜏 ,𝜏 𝑠

⎡⎢⎣
⎛⎜⎝

d𝑢(𝑗)[𝜏 (1),𝜏 (1)
𝑠

]
d𝑝(𝑟) · · · d𝑢(𝑗)[𝜏 (1),𝜏 (𝑙𝑝)

𝑠
]

d𝑝(𝑟)

... . . . ...
d𝑢(𝑗)[𝜏 (𝑙𝑢),𝜏 (1)

𝑠
]

d𝑝(𝑟) · · · d𝑢(𝑗)[𝜏 (𝑙𝑢),𝜏 (𝑙𝑝)
𝑠

]
d𝑝(𝑟)

⎞⎟⎠
⎤⎥⎦ (5.77a)

d𝑥(𝑗)

d𝑝(𝑟)
(𝜏 ,𝜏 𝑠) ≈ 𝛯𝜏 ,𝜏 𝑠

⎡⎢⎣
⎛⎜⎝

d𝑥(𝑗)[𝜏 (1),𝜏 (1)
𝑠 ]

d𝑝(𝑟) · · · d𝑥(𝑗)[𝜏 (1),𝜏 (𝑙𝑝)
𝑠 ]

d𝑝(𝑟)

... . . . ...
d𝑥(𝑗)[𝜏 (𝑙𝑥),𝜏 (1)

𝑠 ]
d𝑝(𝑟) · · · d𝑥(𝑗)[𝜏 (𝑙𝑥),𝜏 (𝑙𝑝)

𝑠 ]
d𝑝(𝑟)

⎞⎟⎠
⎤⎥⎦ (5.77b)

d𝑡𝑔𝑜

d𝑝(𝑟)
(𝜏 𝑠) ≈ 𝛯𝜏 𝑠

[︁(︁
d𝑡𝑔𝑜[𝜏 (1)

𝑠
]

d𝑝(𝑟) · · · d𝑡𝑔𝑜[𝜏 (𝑙𝑝)
𝑠

]
d𝑝(𝑟)

)︁]︁
(5.77c)

During the online phase an approximation of the parametric sensitivity differentials at all
nominal initial conditions of the closed loop system can be obtained by the surface evaluation
(5.77). Figure 5.14 shows the sensitivity surfaces of the rocket car example using bilinear
interpolation (compare Figure 5.13). The sensitivities for the linear constraint perturbations
𝑞 can be handled analogously.
Remark 5.78 (Sensitivity Sampling)
Using the same grid 𝑇𝑢 for OCP(5.49)(𝑝(𝑖)

0 ), 𝑝(𝑖)
0 ∈ 𝑃𝑛𝑜𝑚 results into an increasing solution

accuracy as the same number of discretization points is used for the remaining nominal
trajectory ⋆

𝑥(𝜏 ,𝑝0) on the shrinking interval [𝜏 ; 1], 𝜏 → 1. In addition the uniform grid
resulting from the equal amount of discretization points can be advantageous for the surface
interpolation. An alternative is to reduce the number of discretization points step wise, while
keeping the accuracy of the solution constant. This results into less sensitivity samples and
therefore a reduced memory consumption, but requires the surface interpolation to operate
on a nonuniform grid.
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(e) Position sen. w.r.t. initial velocity
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(g) Velocity sen. w.r.t. initial position
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(h) Velocity sen. w.r.t. initial velocity

Figure 5.14: Interpolated parametric sensitivity of the control, position and velocity against
perturbations in the mass and the position and velocity, occurring at different points of the
optimal trajectory of OCP(5.19)(𝑝0) (cf. Figure 5.13).
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Sensitivity Surface Evaluation in 𝛩(𝑝)

In the online phase the sensitivity surfaces are evaluated at a reference initial condition
𝑝0(𝜏 (𝑟)), 𝜏 (𝑟) ∈ [0; 1[ and on a reference grid ̃︀𝑇𝑢 or ̃︀𝑇𝑥 for control and state functions.
To determine 𝜏 (𝑟) in between the grid points 𝑇𝑛𝑜𝑚 we refine the earlier proposed search
strategy. Let 𝑇𝑑𝑒𝑛𝑠𝑒 ⊂ [0; 1[ be a grid that fulfills the approximation accuracy requirement.
Let 𝑇𝑛𝑜𝑚 ⊂ 𝑇𝑑𝑒𝑛𝑠𝑒. 𝜏 (𝑟) is determined by first finding the closest point

𝜏 (𝑟) = arg min
𝜏 (𝑖)

⃦⃦
𝑝− 𝑝0(𝜏 (𝑖))

⃦⃦
, 𝜏 (𝑖) ∈ 𝑇𝑛𝑜𝑚. (5.79)

The search is then refined on an interval around 𝜏 (𝑟) to determine 𝜏 (𝑟) ∈ 𝑇𝑑𝑒𝑛𝑠𝑒.

Remark 5.80 (Alternative Approach: Distance to a Piecewise Polynomial)
A more accurate, but also more costly approach is to interpolate 𝑝0(𝜏 ), 𝜏 ∈ [0; 1] using
piecewise polynomials, e.g. B-splines. The determination of 𝜏 (𝑟) then requires a root finding
problem for each spline interval.

It remains to choose the evaluation points for the control and state functions. To minimize
the distance to the original discretization points it is natural to choose

̃︀𝑇𝑢 := 𝜏 (𝑟) ∪ {𝜏 | 𝜏 ∈ 𝑇𝑢, 𝜏 > 𝜏 (𝑟)}, (5.81a)̃︀𝑇𝑥 := 𝜏 (𝑟) ∪ {𝜏 | 𝜏 ∈ 𝑇𝑥, 𝜏 > 𝜏 (𝑟)}. (5.81b)

The surfaces can now be evaluated at (𝜏 (𝑟), ̃︀𝑇𝑢), (𝜏 (𝑟), ̃︀𝑇𝑥) and (𝜏 (𝑟)) to obtain an approxi-
mation of the sensitivities for the initial condition at 𝑝0(𝜏 (𝑟)).

̃︂d𝑢(𝑗)

d𝑝(𝑟)
(𝜏 ,𝜏 (𝑟)) 𝜏 ∈ ̃︀𝑇𝑢, 1 ≤ 𝑗 ≤ 𝑛𝑢, 1 ≤ 𝑟 ≤ 𝑛𝑝, (5.82a)

̃︂d𝑥(𝑗)

d𝑝(𝑟)
(𝜏 ,𝜏 (𝑟)) 𝜏 ∈ ̃︀𝑇𝑥, 1 ≤ 𝑗 ≤ 𝑛𝑥, 1 ≤ 𝑟 ≤ 𝑛𝑝, (5.82b)

̃︂d𝑡𝑑

d𝑝(𝑟)
(𝜏 (𝑟)) 1 ≤ 𝑟 ≤ 𝑛𝑝, (5.82c)

̃︂d𝑢(𝑗)

d𝑞𝑟
𝑎

(𝜏 ,𝜏 (𝑟)) 𝜏 ∈ ̃︀𝑇𝑢, 1 ≤ 𝑗 ≤ 𝑛𝑢, 1 ≤ 𝑟 ≤ 𝑛𝑞𝑎
, (5.82d)

̃︂d𝑥(𝑗)

d𝑞𝑟
𝑎

(𝜏 ,𝜏 (𝑟)) 𝜏 ∈ ̃︀𝑇𝑥, 1 ≤ 𝑗 ≤ 𝑛𝑥, 1 ≤ 𝑟 ≤ 𝑛𝑞𝑎
, (5.82e)

̃︂d𝑡𝑑

d𝑞𝑟
𝑎

(𝜏 (𝑟)) 1 ≤ 𝑟 ≤ 𝑛𝑞𝑎
. (5.82f)

The nominal open loop trajectory ⋆
𝑥(𝑝0) and control function ⋆

𝑢(𝑝0) must be interpolated oñ︀𝑇𝑢, ̃︀𝑇𝑥 to obtain the optimal solution at the chosen discretization points. With these inputs
the RTS algorithm can be executed at 𝑝0(𝜏 (𝑟)).
The sensitivity differentials are the main memory consumer for the feedback law. The
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interpolation is a trade-of between lower memory consumption and increased computational
cost. The number of required surface evaluations is equal to the combinations of parameters
with control or state equations and the time:

𝑛𝑠𝑢𝑟𝑓 = (𝑛𝑢 + 𝑛𝑥 + 1)(𝑛𝑝 + 𝑛𝑎). (5.83)

In addition to memory reduction, the interpolation reduces ‖𝛥𝑝‖ = ‖𝑝− 𝑝0(𝜏 (𝑟))‖, by
allowing to start the interpolation from a closer initial condition. The optimality error of
the solution approximation is quadratic in ‖𝛥𝑝‖, a reduction thus results into a quadratic
optimality increase.
At the same time note that Theorem (5.18) only holds at 𝑇𝑛𝑜𝑚, i.e. the interpolated sen-
sitivities do not fulfill the assumptions. The error incurred from the interpolation of the
sensitivity differentials depends on the interpolation order. We will however not pursue
a theoretical investigation of this matter, but rather move on to a numerical test and an
application oriented validation.

5.6.4 Synthesis Conclusion and Pseudo Code Statement

We conclude the derivation by incorporating the refinements discussed in the previous sec-
tions into the feedback law. As main result of this chapter the pseudo code of 𝛩(𝑝) is
stated, which is the basis for the implementation used during the numerical evaluations in
Chapter 6. The offline preparation phase is stated in Algorithm (2), the online feedback
phase is stated in Algorithm (3).

Remark 5.84 (Determination of Discretization Points)
The local discretization error of the grid 𝑇𝑢 can be approximated using a Runge-Kutta-
Fehlberg method. An iterative grid refinement, as suggested e.g. in [Büs98], is used to
distribute the local discretization error equally and thereby minimize the global discretiza-
tion for the given number of discretization points.

1. 𝑇𝑢 ⊂ [0; 1] is determined such that the global discretization error is below the desired
threshold.

2. 𝑇𝑥 ⊂ 𝑇𝑢 is as coarse as possible to minimize memory and CPU requirements, while
sufficiently dissecting the trajectory, as discussed in Section 5.5.1.

3. 𝑇𝑛𝑜𝑚 ⊂ 𝑇𝑢 is as coarse as possible, such that the convergence neighborhoods of the RTS
algorithm are a cover of the nominal trajectory (determined through iterative numeric
tests).

4. 𝑇𝑑𝑒𝑛𝑠𝑒 ⊂ [0; 1] is a refinement of 𝑇𝑛𝑜𝑚 that is used to determine the closest initial
condition.

This concludes the chapter. In the next chapter we focus on evaluating the feasibility and
performance of 𝛩(𝑝) for guiding the hypersonic entry of a small capsule into the Martian
atmosphere.
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Algorithm 2 𝛩 offline phase
1: procedure Preparation(𝑇𝑑𝑒𝑛𝑠𝑒, 𝑇𝑛𝑜𝑚, 𝑇𝑢, 𝑇𝑥)
2: NLP(0)(𝑝0)← Full discretization of OCP(5.1)(𝑝0) on 𝑇𝑑𝑒𝑛𝑠𝑒

3:

⋆
𝑢(5.1)(𝑝0)
⋆
𝑥(5.1)(𝑝0)
⋆
𝑡(5.1)(𝑝0)

← Solve NLP(0)(𝑝0)

4: 𝑝0(𝜏 ) =
(︂

𝑝0
⋆
𝑥(5.1)(𝜏 ,𝑝0)

)︂
◁ (5.52)

5: 𝑃𝑛𝑜𝑚 ← Evaluate 𝑝0(𝜏 ) on 𝑇𝑛𝑜𝑚 ◁ (5.52b)
6: for 𝑝

(𝑖)
0 ∈ 𝑃𝑛𝑜𝑚 do

7: NLP(𝑖)(𝑝(𝑖)
0 ,𝑞0)← Multiple shooting transcription of OCP(5.49)(𝑝

(𝑖)
0 ) on 𝑇𝑢,𝑇𝑥

8:

⋆
𝑢(5.49)(𝑝

(𝑖)
0 )

⋆
𝑥(5.49)(𝑝

(𝑖)
0 )

⋆
𝑡(5.49)(𝑝

(𝑖)
0 )
← Solve NLP(𝑖)(𝑝(𝑖)

0 ,𝑞0)

9:

d𝑢
d𝑝 (𝑝(𝑖)

0 )
d𝑥
d𝑝 (𝑝(𝑖)

0 )
d𝑡
d𝑝(𝑝(𝑖)

0 )
d𝑢
d𝑞𝑎

(𝑝(𝑖)
0 )

d𝑥
d𝑞𝑎

(𝑝(𝑖)
0 )

d𝑡
d𝑞𝑎

(𝑝(𝑖)
0 )

← Param. sensitivity analysis of ⋆
𝑢(5.49)(𝑝

(𝑖)
0 ), ⋆

𝑥(5.49)(𝑝
(𝑖)
0 ),

⋆
𝑡(5.49)(𝑝

(𝑖)
0 )

10: end for
11: for each parameter 𝑝(𝑘), 𝑘 = 1, ..., 𝑛𝑝 do
12: for each control equation 𝑢(𝑗), 𝑗 = 1, ..., 𝑛𝑢 do
13:

̃︂d𝑢(𝑗)

d𝑝(𝑘) (𝜏 ,𝜏 𝑠) = 𝛯𝜏 ,𝜏 𝑠

[︁
d𝑢(𝑗)

d𝑝(𝑘) (𝑝(1)
0 ), ..., d𝑢(𝑗)

d𝑝(𝑘) (𝑝(𝑙𝑝)
0 )

]︁
14: end for
15: for each state equation 𝑥(𝑗), 𝑗 = 1, ..., 𝑛𝑥 do
16:

̃︂d𝑥(𝑗)

d𝑝(𝑘) (𝜏 ,𝜏 𝑠) = 𝛯𝜏 ,𝜏 𝑠

[︁
d𝑥(𝑗)

d𝑝(𝑘) (𝑝(1)
0 ), ..., d𝑥(𝑗)

d𝑝(𝑘) (𝑝(𝑙𝑝)
0 )

]︁
17: end for
18: ̃︂d𝑡

d𝑝(𝑘) (𝜏 𝑠) = 𝛯𝜏 𝑠

[︁
d𝑡

d𝑝(𝑘) (𝑝(1)
0 ), ..., d𝑡

d𝑝(𝑘) (𝑝(𝑙𝑝)
0 )

]︁
19: end for
20: for each parameter 𝑞

(𝑘)
𝑎 , 𝑘 = 1, ..., 𝑛𝑎 do

21: for each control equation 𝑢(𝑗), 𝑗 = 1, ..., 𝑛𝑢 do
22:

̃︂d𝑢(𝑗)

d𝑞
(𝑘)
𝑎

(𝜏 ,𝜏 𝑠) = 𝛯𝜏 ,𝜏 𝑠

[︂
d𝑢(𝑗)

d𝑞
(𝑘)
𝑎

(𝑝(1)
0 ), ..., d𝑢(𝑗)

d𝑞
(𝑘)
𝑎

(𝑝(𝑙𝑝)
0 )

]︂
23: end for
24: for each state equation 𝑥(𝑗), 𝑗 = 1, ..., 𝑛𝑥 do
25:

̃︂d𝑥(𝑗)

d𝑞
(𝑘)
𝑎

(𝜏 ,𝜏 𝑠) = 𝛯𝜏 ,𝜏 𝑠

[︂
d𝑥(𝑗)

d𝑞
(𝑘)
𝑎

(𝑝(1)
0 ), ..., d𝑥(𝑗)

d𝑞
(𝑘)
𝑎

(𝑝(𝑙𝑝)
0 )

]︂
26: end for
27: ̃︂d𝑡

d𝑞
(𝑘)
𝑎

(𝜏 𝑠) = 𝛯𝜏 𝑠

[︂
d𝑡

d𝑞
(𝑘)
𝑎

(𝑝(1)
0 ), ..., d𝑡

d𝑞
(𝑘)
𝑎

(𝑝(𝑙𝑝)
0 )

]︂
28: end for
29: return ⋆

𝑢(5.49)(𝑝
(1)
0 ), ⋆

𝑥(5.49)(𝑝
(1)
0 ),

⋆
𝑡(5.49)(𝑝

(1)
0 ), ̃︁d𝑢

d𝑝 , ̃︁d𝑥
d𝑝 , ̃︁d𝑡

d𝑝 , ̃︁d𝑢
d𝑞𝑎

, ̃︁d𝑥
d𝑞𝑎

, ̃︁d𝑡
d𝑞𝑎

30: end procedure
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Algorithm 3 𝛩 online phase
1: procedure Feedback(𝑝)
2: data

⟨
⋆
𝑢(5.49)(𝑝

(1)
0 ), ⋆

𝑥(5.49)(𝑝
(1)
0 ),

⋆
𝑡(5.49)(𝑝

(1)
0 ), ̃︁d𝑢

d𝑝 , ̃︁d𝑥
d𝑝 , ̃︁d𝑡

d𝑝 , ̃︁d𝑢
d𝑞𝑎

, ̃︁d𝑥
d𝑞𝑎

, ̃︁d𝑡
d𝑞𝑎

⟩
3: 𝜏 min = arg min𝜏 (𝑖)

⃦⃦
𝑝− 𝑝0(𝜏 (𝑖))

⃦⃦
2𝑊

, 𝜏 (𝑖) ∈ 𝑇𝑛𝑜𝑚

4: 𝜏 (𝑟) = arg min𝜏 (𝑖𝑖)
⃦⃦
𝑝− 𝑝0(𝜏 (𝑖𝑖))

⃦⃦
2𝑊

, 𝜏 (𝑖𝑖) ∈ [𝜏 (𝑖); 𝜏 (𝑖+1)] ⊂ 𝑇𝑑𝑒𝑛𝑠𝑒

5: 𝑝(𝑟) = 𝑝0(𝜏 (𝑟))
6: 𝛥𝑝 = 𝑝− 𝑝(𝑟)

7: ̃︀𝑇𝑢 = 𝜏 (𝑟) ∪ {𝜏 (𝑖) ∈ 𝑇𝑢 : 𝜏 (𝑖) > 𝜏 (𝑟)}
8: ̃︀𝑇𝑥 = 𝜏 (𝑟) ∪ {𝜏 (𝑘) ∈ 𝑇𝑥 : 𝜏 (𝑘) > 𝜏 (𝑟)}

9: 𝑧(𝑝(𝑟)) =

⎛⎜⎝
⋆
𝑢(5.49)(𝜏 (𝑖),𝑝0), 𝜏 (𝑖) ∈ ̃︀𝑇𝑢
⋆
𝑥(5.49)(𝜏 (𝑘),𝑝0), 𝜏 (𝑘) ∈ ̃︀𝑇𝑥
⋆
𝑡(5.49)(𝑝0)−

⋆
𝑡(5.49)(𝑝0)𝜏 (𝑟)

⎞⎟⎠ ◁ eval. sol. at ̃︀𝑇𝑢, ̃︀𝑇𝑥

10: for each parameter 𝑝(𝑘), 𝑘 = 1, ..., 𝑛𝑝 do
11: for each control equation 𝑢(𝑗), 𝑗 = 1, ..., 𝑛𝑢 do
12: ̃︁d𝑧

d𝑝(𝑝(𝑟))← ̃︂d𝑢(𝑗)

d𝑝(𝑘) ( ̃︀𝑇𝑢,𝜏 (𝑟)) ◁ eval. sen. surf. at ( ̃︀𝑇𝑢,𝑝(𝑟))
13: end for
14: for each state equation 𝑥(𝑗), 𝑗 = 1, ..., 𝑛𝑥 do
15: ̃︁d𝑧

d𝑝(𝑝(𝑟))← ̃︂d𝑥(𝑗)

d𝑝(𝑘) ( ̃︀𝑇𝑥,𝜏 (𝑟)) ◁ eval. sen. surf. at ( ̃︀𝑇𝑥,𝑝(𝑟))
16: end for
17: ̃︁d𝑧

d𝑝(𝑝(𝑟))← ̃︂d𝑡
d𝑝(𝑘) (𝜏 (𝑟))

18: end for
19: for each parameter 𝑞

(𝑘)
𝑎 , 𝑘 = 1, ..., 𝑛𝑎 do

20: for each control equation 𝑢(𝑗), 𝑗 = 1, ..., 𝑛𝑢 do
21: ̃︁d𝑧

d𝑞𝑎
(𝑝(𝑟))← ̃︂d𝑢(𝑗)

d𝑞
(𝑘)
𝑎

( ̃︀𝑇𝑢,𝜏 (𝑟))
22: end for
23: for each state equation 𝑥(𝑗), 𝑗 = 1, ..., 𝑛𝑥 do
24: ̃︁d𝑧

d𝑞𝑎
(𝑝(𝑟))← ̃︂d𝑥(𝑗)

d𝑞
(𝑘)
𝑎

( ̃︀𝑇𝑥,𝜏 (𝑟))
25: end for
26: ̃︁d𝑧

d𝑞𝑎
(𝑝(𝑟))← ̃︂d𝑡

d𝑞
(𝑘)
𝑎

(𝜏 (𝑟))
27: end for
28: 𝑧1(𝑝) = 𝑧(𝑝(𝑟)) + ̃︁d𝑧

d𝑝(𝑝(𝑟)) 𝛥𝑝 ◁ (5.13b)
29: while

⃦⃦
𝑔𝑎(𝑧[𝑘],𝑝)]

⃦⃦
> 𝜀 do

30: 𝑧[𝑘+1](𝑝) = 𝑧[𝑘](𝑝) + ̃︁d𝑧
d𝑞𝑎

(𝑝(𝑟)) 𝑔𝑎(𝑧[𝑘],𝑝) ◁ (5.17)
31: if not convergence heuristic or 𝑘 > 𝑘max then ◁ see Section 5.5.3
32: error!
33: end if
34: end while
35: 𝑢̃(𝑝)← 𝑧𝜀(𝑝)
36: 𝑥̃(𝑝)← integrate[𝑓(𝑢̃(𝑝); 𝑝,𝑥)]
37: return 𝑢̃(𝑝), 𝑥̃(𝑝)
38: end procedure



CHAPTER 6
On-Board Trajectory Computation for Mars Atmospheric Entry

6.1 Mars Entry Reference Scenario
For the future exploration of Mars the European Space Agency (ESA) investigates Mars
precision landing. Oriented at the ESA Mars precision landing study we consider a scenario
which has the goal to deliver a rover to the surface of Mars, in close vicinity to already
present mission assets, as e.g. required for the return of a Mars soil sample. The preliminary
GNC accuracy requirement for this scenario is to achieve a 10 km radial error at parachute
opening. This requires a guided atmospheric entry and the use of atmospheric maneuvering
to precisely steer the vehicle from the entry interface to the parachute opening point.
The assumed kinematic conditions at the entry interface point correspond to a direct hyper-
bolic entry as described in MPL [Wol07]. The entry is characterized by a steep flight path
angle of −14.5°. The touchdown landing site is assumed to be at sea level. The opening of
the parachute is scheduled at an altitude of 10 000 m, in close vicinity to the landing site.
The parachute opening may not occur at a higher dynamic pressure than 0.55 kPa, which
corresponds to a Mach number of 2.2. An opening at lower dynamic pressure/Mach is de-
sirable to reduce the strain on the parachute system. The entry interface and the parachute
opening conditions are summarized in Table 6.1.
The cone shaped entry capsule has an average lift over drag ratio at hyper- and supersonic
speed of approximately 0.2 at a trim angle of attack of −12.5°. The aerodynamic coefficients
are obtained from the Mars Precision Lander aerodynamic database. Additional details of
the vehicle model have been given in Section 2.3.
The maximal values for the path constraints on the heat flux 𝑄̇, the dynamic pressure 𝑑
and the load factor 𝑛, as considered in the MSR mission [Wol07], are shown in Table 6.2.
The atmosphere model is obtained from the European Mars Climate Database 5.0. The
nominal scenario is based on average yearly UV solar flux and average dust concentration.

97
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Table 6.1: Entry interface point (EIP) and parachute opening conditions (POC)

EIP Value POC Value
ℎ0 = 120 000 m ℎ𝑓 ≥ 10 000 m
𝜆0 = 0° 𝜆𝑓 = 11.3°
𝜙0 = 25° 𝜙𝑓 = 23.3°
𝑣0 = 5440.8 m

s 𝑑max𝑓
≤ 0.55 kPa

𝛾0 = −14.5°
𝜒0 = 97.4°

Table 6.2: Path constraints

Property Limit

𝑄̇max = 1600 kW
m2

𝑑max = 17 kPa
𝑛max = 15

6.2 Formulation of the Optimal Control Problem
There are multiple ways to formulate the Mars entry scenario as optimal control problem.
Our overall goal is to use the available degrees of freedom to reduce the sensitivity of the
control function as much as possible, because this can translate into an increased convergence
region of the RTS algorithm and thus increase the control envelop of the proposed guidance
law. The available degrees of freedom are

1. the formulation of the boundary conditions,
2. the formulation of the objective function,
3. the choice of the perturbation parameters,
4. the choice of the independent variable.

6.2.1 Final Boundary Constraints
The final boundary constraints can either be enforced directly, or they can be considered
as an objective, by minimizing the (weighted) quadratic distance to the target value in the
objective function. If a terminal state constraint is treated as objective, a potentially active
constraint is removed from the formulation. As a consequence the feasibility corrector itera-
tion (5.17) cannot be used to achieve the satisfaction of this constraint. The transformation
of a terminally constrained state into an objective is a trade-off between relaxing the opti-
mality conditions (potentially resulting in lower sensitivities) and the ability to achieve the
desired terminal state exactly.
Numerical analysis shows, that active terminal constraints on the altitude, longitude, lati-
tude and velocity result into a rigid and sensitive problem, which is undesirable because it
diminishes the correction space. Achieving a low velocity and a high altitude at the same
time are competing objectives, because only a certain amount of the vehicle’s mechanical
energy can be dissipated. To relax the problem it can thus be advantageous to fix only
either the terminal altitude or velocity and consider the other one as objective.
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The relationship between the terminal altitude and velocity is constrained by the dynamic
pressure limit of the parachute system. This can be expressed with the nonlinear boundary
constraint

1
2𝜌(ℎ𝑓 )𝑣2

𝑓 − 𝑑max𝑓
= 0 (6.1)

We choose to simplify this constraint and approximate it using box constraints on the
state1. Because of the competitive relationship between altitude and velocity, a constraint
on the terminal altitude is active at the optimal solution, whenever the objective includes
a minimization of the terminal velocity and vice versa. If an equality constraint is enforced
on the terminal altitude, (6.1) can be solved for the terminal velocity, using the reference
atmosphere 𝜌ref(ℎ𝑓 ) > 0.

𝑣max𝑓
=

√︃
2 𝑑max𝑓

𝜌ref(ℎ𝑓 ) (6.2)

At an altitude of 10 000 m, the critical velocity 𝑣max𝑓
evaluates to approximately 500 m

s ; the
nominal dynamic pressure would be achieved at 440 m

s . The linear constraints

ℎ𝑓 − 10000 = 0 (6.2a)
𝑣𝑓 − 500 ≤ 0 (6.2b)

ensure that the nonlinear dynamic pressure constraint is satisfied under nominal conditions.
But because we do not capture the nonlinear relationship with the atmospheric density,
the limit can be exceeded in a thicker atmosphere. This is prevented in the following by
penalizing a high terminal velocity in the objective function.

6.2.2 Objective Function
The performance index is a linear combination of multiple objective terms:
In addition to constraining the terminal velocity (6.2b) it is desirable to incentivise 𝑣𝑓 ≈ 440
to achieve the nominal dynamic pressure for the parachute opening. The objective thus
includes the term

𝐽𝑉 = (𝑣𝑓 − 440)2. (6.3)

The weight of this term is chosen such that we achieve 𝑣𝑓 ≈ 440 in the nominal solution.
This strategy has proven to be sufficient to satisfy the terminal pressure constraint even for
a strongly perturbed atmosphere.
During the high velocity phase of the entry, the feasible space is limited by the constraint
on the maximal heat flux (2.26). It is desirable to minimize the maximal heat flux during
this phase, to stay as far away from the constraint boundary as possible. This leads to a
min-max problem, which is problematic to use with the real-time update scheme (cf. Section
5.5.4). An alternative that has a similar effect is to minimize the total square of the heat
flux.

1 While theoretically (6.1) is only one nonlinear constraint among many, the numerical implementation of
nonlinear boundary constraints increases the implementation effort.
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𝐽𝐻 =
ˆ 𝑡𝑓

𝑡𝑠

⎛⎝𝑘𝑝

√︃
𝜌(ℎ)
𝑟𝑛

𝑣3

⎞⎠2

d𝑡 (6.4)

Minimizing the total heat flux itself (without taking the square) is often not beneficial
towards a minimization of the peak heat flux.
The control authority of the entry capsule is determined by the generated lift, more specif-
ically by the ability to alter the vertical lift to drag ratio. The control reserves would be
maximized by planning the nominal trajectory for a flight at zero vertical lift, over the entire
time. Then all lifting capability could be used to react to perturbations. Some lifting is
required to regulate the sink rate to acceptable levels, but it is desirable to use a minimum
of vertical lift.

𝐽𝐿 =
ˆ 𝑡𝑓

𝑡𝑠

cos2 𝜎 d𝑡 (6.5)

This penalizes flight at full lift-up or lift-down and thus helps to prevent encountering the
bank angle control singularities.
Lastly the objective can be used to shape the control function. A smooth control profile is
desired, to enable an accurate and immediate realization of the commanded values by the
attitude control system. Smoothing of the control function can be achieved by minimizing
the integral over the squared control input, the so called control energy. The control input
is chosen as the bank angle rate 𝜎̇, the bank angle 𝜎 is treated as an auxiliary state.

𝐽𝑅 =
ˆ 𝑡𝑓

𝑡𝑠

𝜎̇2 d𝑡 (6.6)

The objective function is a linear combination of the terms 𝐽𝑉 , 𝐽𝐻 , 𝐽𝐿, 𝐽𝑅. Each term is
weighted with a factor 𝑤𝑉 , 𝑤𝐻 , 𝑤𝐿, 𝑤𝑅 ∈ R+

0 .

min 𝐽 = 𝑤𝑉 𝐽𝑉 + 𝑤𝐻𝐽𝐻 + 𝑤𝐿𝐽𝐿 + 𝑤𝑅𝐽𝑅 (6.7)

The weights are chosen such that all objective terms contribute roughly equally, with a
slight priority on the heat-flux and vertical lift1.

6.2.3 Perturbation Parametrization
We differentiate between two kinds of perturbations:

1. Known perturbations can be represented in the OCP by a mathematical description
of their effect: the perturbation model.

2. Unknown perturbations are not represented in the OCP, because either their existence
is not known a priori, or because their effect cannot be described mathematically.

Perturbations can either be detected by direct measurement using a sensor, or they can be

1 The objective function weights are available in Appendix G
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estimated by a filter algorithm, on the basis of indirectly related sensor measurements. Note
that if a perturbation cannot be measured or estimated at control time, it is effectively an
unknown perturbation, even though a perturbation model might be available.
Known perturbations that can be measured or estimated are added to the parameter vector
𝑝 and in the parametric sensitivity analysis we obtain the related sensitivity d𝑧

d𝑝
. In the online

phase the Taylor expansion (5.13b) directly adapts the solution to the known perturbations.
The effects of unknown perturbations (and the remaining error of the Taylor expansion)
is determined indirectly as the violation of the NLP constraint function. The solution is
adapted to these unknown perturbations in the feasibility correction (5.17), by modeling
the unknown perturbations as linear perturbation of the constraint function. For known
perturbations the approximation error ‖𝑧[∞](𝑝)− ⋆

𝑧(𝑝)‖ is of the order ‖𝛥𝑞‖3, while for
unknown perturbations the approximation error increases to ‖𝛥𝑞‖2 [Büs02].
In principle we are thus interested in modeling as many perturbations as possible. To be
able to use 𝛩(𝑝) it is clear that we parametrize the initial state:

𝑥(0) = 𝑥𝑠,0 +𝛥𝑥𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎝

ℎ𝑠,0

𝜆𝑠,0

𝜙𝑠,0

𝑣𝑠,0

𝛾𝑠,0

𝜒𝑠,0

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝

𝛥ℎ𝑠

𝛥𝜆𝑠

𝛥𝜙𝑠

𝛥𝑣𝑠

𝛥𝛾𝑠

𝛥𝜒𝑠

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.8)

In addition perturbations in the aerodynamic forces are most important, this includes per-
turbations of the temperature, the pressure, the atmospheric density, the aerodynamic
coefficients, the trim angle of attack and the vehicle mass. All these perturbations affect
the lift and drag accelerations:

𝐿 = 1
2𝜌(ℎ)𝑣2𝐶𝐿(𝑀(𝑣,ℎ)) 𝑆

𝑚
(6.9a)

𝐷 = 1
2𝜌(ℎ)𝑣2𝐶𝐷(𝑀(𝑣,ℎ)) 𝑆

𝑚
(6.9b)

One challenge of Mars atmospheric entry is the lack of direct measurements: In current
entry systems only IMU data, i.e. the translational accelerations and rotational rates are
available. The state is integrated using the measurements in an inertial strap-down inte-
gration, starting from the last known absolute position and orientation, which is typically
briefly before reaching the entry interface point. The estimation error grows unboundedly
with time. The dynamic system is thus not observable and most importantly the estimation
error cannot be compensated by the guidance system.
The estimation of the perturbation parameters must also be based on inertial navigation.
This is problematic, because there is no way to measure the contribution of any of the
previously mentioned parameters to the sensed acceleration data, i.e. the error in each in-
dividual parameter is unknown. This problem can be elevated by a well tuned estimation
algorithm, provided that accurate models and accurate knowledge of the parameter covari-
ances are available. The development and tuning of a filter algorithm and the determination
of the covariances is however not the focus of this work. We follow a different approach and
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parametrize the lift and drag acceleration directly:

𝐿 = 1
2𝜌(ℎ)𝑣2𝐶𝐿(𝑀) 𝑆

𝑚
(1 +𝛥𝐿), (6.10a)

𝐷 = 1
2𝜌(ℎ)𝑣2𝐶𝐷(𝑀) 𝑆

𝑚
(1 +𝛥𝐷). (6.10b)

The aerodynamics are treated as an unpredictable system, thus the perturbation model is
chosen as a time invariant linear scaling. The accelerations 𝐿 and 𝐷 are obtained as mea-
surements from the IMU. 𝛥𝐿 and 𝛥𝐷 are thus directly depending on the measurement:

𝛥𝐿 = 𝐿− 𝐿𝑟, (6.11a)
𝛥𝐷 = 𝐷 −𝐷𝑟, (6.11b)

where 𝐿𝑟 and 𝐷𝑟 are the acceleration profiles of the nominal open loop trajectory. For
academic purposes we choose to also parametrize the mass 𝑚 and the terminal position
ℎ𝑓 , 𝜆𝑓 , 𝜙𝑓 . The parametrization of the terminal position opens the possibility to change the
parachute opening point, by artificially introducing a perturbation. Although this is not
demanded in the scenario, it has potential uses and does not require additional effort from
a mathematical point of view.
The combined perturbation parameters for the sensitivity analysis of the nominal closed
loop are thus

𝑝(𝑡) = (𝑝, 𝑥𝑠) = (𝐿,𝐷,𝑚,ℎ𝑠,𝜆𝑠,𝜙𝑠,𝑣𝑠,𝛾𝑠,𝜒𝑠,ℎ𝑓 ,𝜆𝑓 ,𝜙𝑓 ). (6.12a)

6.2.4 Time Domain Problem Statement
The entry problem can now be formulated as parametric optimal control problem. The
formulation uses the extended state vector 𝑥 ∈ R7,

𝑥 = (ℎ, 𝜆, 𝜙, 𝑣, 𝛾, 𝜒, 𝜎), (6.13)

and the control vector 𝑢 ∈ R,

𝑢 = 𝜎̇. (6.14)

Using the models of Section 2, the problem can be written in compact, normalized form:
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Problem 6.15 (Mars Entry (time dynamics, non-rotating planet))

min
𝑢,𝑡𝑑

𝐽(𝑥(𝜏),𝑢(𝜏),𝑡𝑑,𝑝) = 𝑤𝑉 (𝑣𝑓 − 430)2 (6.16a)

+ 𝑤𝐻𝑡𝑑

ˆ 1

0

⎛⎝𝑘𝑝

√︃
𝜌(ℎ)
𝑟𝑛

𝑣3

⎞⎠2

+ 𝑤𝐿 (cos 𝜎)2 + 𝑤𝑅 (𝜎̇)2 d𝜏

s.t. 𝑥̇ = 𝑡𝑑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣 sin 𝛾
𝑣 cos 𝛾 sin 𝜒

𝑟 cos 𝜙

𝑣 cos 𝛾 cos 𝜒

𝑟

−𝐷 − 𝑔 sin 𝛾
𝐿

𝑣
cos 𝜎 +

(︀
𝑣

𝑟
− 𝑔

𝑣

)︀
cos 𝛾

𝐿 sin 𝜎

𝑣 cos 𝛾
+ 𝑣

𝑟
cos 𝛾 sin𝜒 tan𝜙
𝜎̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.16b)

𝜓𝑠(𝑥(0),𝑝) =

⎛⎜⎜⎜⎜⎜⎜⎝

120000
0
25

5440.8
−14.5
97.4

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝

𝛥ℎ0

𝛥𝜆0

𝛥𝜙0

𝛥𝑣0

𝛥𝛾0

𝛥𝜒0

⎞⎟⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎜⎝

𝑥(1)(0)
𝑥(2)(0)
𝑥(3)(0)
𝑥(4)(0)
𝑥(5)(0)
𝑥(6)(0)

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 (6.16c)

𝜓𝑓 (𝑥(1),𝑝) =

⎛⎜⎜⎝
10000
11.3
23.3
450

⎞⎟⎟⎠ +

⎛⎜⎜⎝
𝛥ℎ𝑓

𝛥𝜆𝑓

𝛥𝜙𝑓

0

⎞⎟⎟⎠−
⎛⎜⎜⎝
𝑥(1)(1)
𝑥(2)(1)
𝑥(3)(1)
𝑥(4)(1)

⎞⎟⎟⎠
=
=
=
≤

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ (6.16d)

𝑐(𝑥(𝜏 ),𝑢(𝜏),𝑝) =

⎛⎜⎝𝑘𝑝

√
𝜌(ℎ)

1000𝑟𝑛
𝑣3

1
2000𝜌(ℎ)𝑣2

√
𝐷2+𝐿2

𝑔𝐸

⎞⎟⎠ ≤
⎛⎝1600

17
15

⎞⎠ (6.16e)

with 𝐿 = 𝐿𝑟(1 +𝛥𝐿) 1050
1050 +𝛥𝑚

(6.16f)

𝐷 = 𝐷𝑟(1 +𝛥𝐷) 1050
1050 +𝛥𝑚

. (6.16g)
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6.2.5 Energy Domain Problem Statement
Time can be replaced as independent variable by energy as illustrated in Section 2.5.2. En-
ergy is a function of altitude and velocity, i.e. time is substituted for a relationship between
two states. This opens a new degree of freedom and potentially reduces the sensitivity of
the system against perturbations in these states.
The transformed optimal control process is discretized with respect to energy; discretization
points correspond to energy levels and the state trajectory and the control are functions
of energy. Let 𝜏𝑒 ∈ [0; 1] be the normalized energy over the domain [𝐸𝑠; 𝐸𝑓 ], and let
𝐸𝑑 = 𝐸𝑓 − 𝐸𝑠. The normalized energy dynamics are

𝑥′(𝜏𝑒) = 𝐸𝑑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
𝐷

sin 𝛾
− 1

𝐷

cos 𝛾 sin 𝜒

𝑟 cos 𝜙

− 1
𝐷

cos 𝛾 cos 𝜒

𝑟
𝐷+𝑔 sin 𝛾

𝐷𝑣

− 𝐿

𝐷

cos 𝜎

𝑣2 −
(︀

𝑣

𝑟
− 𝑔

𝑣

)︀
cos 𝛾

𝐷𝑣

− 𝐿

𝐷

sin 𝜎

𝑣2 cos 𝛾
− 1

𝐷𝑟
cos 𝛾 sin𝜒 tan𝜙

− 𝜎̇

𝑣𝐷
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.17)

Because the problem is discretized with respect to energy, the objective function and in
particular the Lagrange term are defined with respect to energy. While mathematically this
is of no concern, it is a change of the optimization goal, which is not desired. Moreover
the physical interpretation of the Lagrange terms with respect to energy is unclear (e.g. the
energy integral over the heat-flux).
Our goal is a comparison of the guidance and control performance based on the time and
the energy domain formulation. Thus we want to keep the optimization goal identical in
both formulations. This requires to integrate the Lagrange term with respect to time, while
the problem is discretized with respect to energy. The transformation from time to energy
is explicitly given by (2.20), but the inverse function cannot be obtained explicitly. We can
however use the differential relationship 𝐸̇ = −𝑣𝐷 (cf. (2.21)) to write the process duration
as

𝑡𝑑 = 𝑡𝑓 − 𝑡𝑠 = −
ˆ 𝐸𝑓

𝐸𝑠

1
𝑣(𝐸)𝐷(𝐸) d𝐸 =

ˆ 𝐸𝑠

𝐸𝑓

1
𝑣(𝐸)𝐷(𝐸) d𝐸 (6.18)

≈ 0.5
𝑙𝑢−1∑︁
𝑖=1

1
𝑣(𝐸𝑖+1)𝐷(𝐸𝑖+1)

+ 1
𝑣(𝐸𝑖)𝐷(𝐸𝑖)

with 𝐸𝑠 = 𝐸(𝑡𝑠) and 𝐸𝑓 = 𝐸(𝑡𝑓 ). The time that passes in the interval 𝛥𝐸𝑖 = 𝐸𝑖+1 − 𝐸𝑖

is

𝛥𝑡𝑖 ≈ 0.5
(︂

1
𝑣(𝐸𝑖+1)𝐷(𝐸𝑖+1)

+ 1
𝑣(𝐸𝑖)𝐷(𝐸𝑖)

)︂
(6.19)

= 0.5
(︂

1
𝑣(𝜏 (𝑖+1)

𝑒 )𝐷(𝜏 (𝑖+1)
𝑒 ) + 1

𝑣(𝜏 (𝑖)
𝑒 )𝐷(𝜏 (𝑖)

𝑒 )

)︂
(𝐸𝑓 − 𝐸𝑠)(𝜏 (𝑖+1)

𝑒 − 𝜏 (𝑖)
𝑒 )

where 𝜏 (𝑖)
𝑒 ∈ [0; 1], 1 ≤ 𝑖 ≤ 𝑙𝑢 − 1 are the discretization points of the normalized energy.
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Relation (6.19) allows to approximate the time integral over a function of normalized energy
𝑓(𝜏𝑒) : [0; 1]→ R as

ˆ 𝑡𝑓

𝑡𝑠

𝑓(𝜏𝑒) 𝑑𝑡 ≈ 0.5
𝑙𝑢−1∑︁
𝑖=1

𝛥𝑡𝑖

(︀
𝑓(𝜏 (𝑖+1)

𝑒 ) + 𝑓(𝜏 (𝑖)
𝑒 )

)︀
. (6.20)

This allows to solve the following optimal control process:

Problem 6.21 (Mars Entry (energy dynamics, non-rotating planet))

min
𝑢,𝑡𝑑

𝐽(𝑥(𝜏𝑒),𝑢(𝜏𝑒),𝐸𝑙,𝑝) = 𝑤𝑉 (𝑣𝑓 − 430)2 (6.22a)

+
ˆ 𝑡𝑓

0
𝑤𝐻

⎛⎝𝑘𝑝

√︃
𝜌(ℎ)
𝑟𝑛

𝑣3

⎞⎠2

+ 𝑤𝐿 (cos 𝜎)2 + 𝑤𝑅 (𝜎̇)2 d𝑡

s.t. 𝑥′(𝜏𝑒) = 𝐸𝑙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
𝐷

sin 𝛾
− 1

𝐷

cos 𝛾 sin 𝜒

𝑟 cos 𝜙

− 1
𝐷

cos 𝛾 cos 𝜒

𝑟
𝐷+𝑔 sin 𝛾

𝐷𝑣

− 𝐿

𝐷

cos 𝜎

𝑣2 −
(︀

𝑣

𝑟
− 𝑔

𝑣

)︀
cos 𝛾

𝐷𝑣

− 𝐿

𝐷

sin 𝜎

𝑣2 cos 𝛾
− 1

𝐷𝑟
cos 𝛾 sin𝜒 tan𝜙
− 𝜎̇

𝑣𝐷

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.22b)

𝜓𝑠(𝑥(0),𝑝) =

⎛⎜⎜⎜⎜⎜⎜⎝

120000
0
25

5440.8
−14.5
97.4

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝

𝛥ℎ0

𝛥𝜆0

𝛥𝜙0

𝛥𝑣0

𝛥𝛾0

𝛥𝜒0
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⎛⎜⎜⎜⎜⎜⎜⎝

𝑥(1)(0)
𝑥(2)(0)
𝑥(3)(0)
𝑥(4)(0)
𝑥(5)(0)
𝑥(6)(0)

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 (6.22c)

𝜓𝑓 (𝑥(1),𝑝) =

⎛⎜⎜⎝
10000
11.3
23.3
450

⎞⎟⎟⎠ +

⎛⎜⎜⎝
𝛥ℎ𝑓

𝛥𝜆𝑓

𝛥𝜙𝑓

0

⎞⎟⎟⎠−
⎛⎜⎜⎝
𝑥(1)(1)
𝑥(2)(1)
𝑥(3)(1)
𝑥(4)(1)

⎞⎟⎟⎠
=
=
=
≤

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ (6.22d)

𝑐(𝑥(𝜏𝑒),𝑢(𝜏𝑒),𝑝) =

⎛⎜⎝𝑘𝑝

√
𝜌(ℎ)

1000𝑟𝑛
𝑣3

1
2000𝜌(ℎ)𝑣2

√
𝐷2+𝐿2

𝑔𝐸

⎞⎟⎠ ≤
⎛⎝1600

17
15

⎞⎠ (6.22e)

OCP(6.15)(𝑝) and OCP(6.21)(𝑝) have identical objective functions, boundary conditions and
path constraints. Their dynamics are related through a strongly nonlinear state transfor-
mation, which changes the dependencies within the dynamics through substitution of time
with a relationship between altitude and velocity. In the next sections we compare the so-
lutions and the parametric sensitivities of both formulations to determine the effects of this
transformation and to conclude if either offers an advantage over the other for the purpose
of sensitivity based real-time solution approximation.
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6.3 Problem Analysis

OCP(6.15)(𝑝) and OCP(6.21)(𝑝) are analyzed offline using Algorithm (2). Figure 6.1 recalls
the offline preparation phase schematically.
The problems are discretized with the standard Runge-Kutta (RK4) method. The control
function is linearly interpolated. Identical objective weights are used for both problems (see
Appendix G).
All first- and second order derivatives are computed quasi-analytically using automatic dif-
ferentiation, which allows to determine the true sparsity patterns and to compute the deriva-
tives accurately up to machine precision. The numerical accuracy for constraint satisfaction
and optimality is 10−12.

Trans. WORHPOCP(p(i)) NLP(p(i))
][ 0

* pz
][ 0

* pz1:  ii

][ )(
0
ip

dp
dz

][ )(
0
ip

dq
dz

][ )1(
0pdq

dz

][ )1(
0pdp

dz00

Figure 6.1: Preparation of the nominal solution and the sensitivity catalog.

6.3.1 Nominal Solution

To compare the nominal open loop solutions of OCP(6.15)(𝑝) and OCP(6.21)(𝑝), the time
domain solution is transformed to the energy domain and vice versa. Consider Figure 6.2
which shows two pairs of graphs with the following coloring:

Dark blue: Nominal solution of (6.15) in normalized time.
Cyan: Nominal solution of (6.15) in normalized energy.
Red: Nominal solution of (6.21) in normalized energy.
Magenta: Nominal solution of (6.21) in normalized time.

Figure 6.2a shows the optimal control function 𝜎̇, Figure 6.2b shows the bank angle 𝜎.
The expectation that both problems have an identical optimal solution is fulfilled. The
optimal controls of both problems are identical to a relative accuracy of 10−2 and the
optimal objective function values are identical to a relative accuracy of 10−3. This degree
of equivalence can likewise be achieved with single shooting and full discretization.
Image 6.2c and 6.2d illustrate the effect of the change of the independent variable. While
the energy loss is rapid and strongly nonlinear in the time domain, this nonlinearity is
removed by the transformation. In the energy domain the energy function 𝐸 is the identity
and 𝐸̇ is roughly a quadratic function. Whereas in the time domain 𝐸̇ is a higher order
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function, that is very shallow in the beginning and the end, and steep in between. The
transformation to the energy domain is thus a strong compression at the beginning and the
end, and a relaxation in between (cf. Figure 6.2e).
Using the transformed control grid of OCP(6.15)(𝑝0) for OCP(6.21)(𝑝0) leads to an increased
discretization error and vice versa1. Thus OCP(6.15)(𝑝0) and OCP(6.21)(𝑝0) are discretized
on different control grids2 to achieve the same order of global discretization error, while
minimizing the number of required discretization points by equally distributing the local
discretization error as suggested by Büskens [Büs98].
Figure 6.3 shows the optimal open loop state trajectories of both solutions. Note that in
6.3d the velocity increases until 𝜏𝑡 ≈ 0.25 (respectively 𝜏𝑒 ≈ 0.015), i.e. in this phase the
kinetic energy is increasing. Figure 6.3a shows a rapid decrease of the altitude in the same
interval, i.e. a reduction of the potential energy. The total amount of energy lost in this
phase is very small, such that in the energy domain this entire dynamic is compressed into
the interval [0; 0.02]𝑒. As a consequence the energy domain dynamics has stiff characteristics
in this region, requiring a fine discretization. We will come back to this interval of rapid
altitude loss when analyzing the sensitivities and the correction space. The phase of rapid
deceleration [0.25; 0.5]𝑡 is stretched to [0.02; 0.9]𝑒.
Figure 6.4 shows the nominal aerodynamic acceleration profiles and the related path con-
straints. The path constraints do not become active, and there is ample margin between
the maximal constraint values and the boundaries, which is beneficial towards the intended
approach. Further tests have shown, that the path constraints will not become active, even
under the worst expected conditions. Especially the margin on the heat flux is generous. If
detailed heating models confirm the estimate of the Sutton-Graves method (2.26), it could
be feasible to use a less resistant, but lighter heat shield, which could result in an increase
of the payload mass.

1 The global and local discretization errors are estimated using the Runge-Kutta-Fehlberg (RK45) scheme.
2 OCP(6.15)(𝑝0) uses 122 discretization points; OCP(6.21)(𝑝0) uses 127 discretization points.
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Figure 6.2: Subplots (a) and (b) show the nominal optimal control function for the problems
(6.15) and (6.21) in the normalized time and energy domain. Subplots (c) and (d) show the
energy and the energy derivative. Subplot (e) shows the transformation between the time
based discretization (blue) to the energy based discretization (red). The grey lines indicate the
corresponding transformed point.
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Figure 6.3: Nominal optimal state trajectories of the problems (6.15) and (6.21) in normalized
time (blue) and energy (red).
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Figure 6.4: The aerodynamic accelerations and path constraints for the nominal solution
of problems (6.15) and (6.21) plotted against normalized time (blue) and normalized energy
(red). The boundary (dashed red) is identical for both problems.
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6.3.2 Parametric Sensitivity Analysis

Parametric Sensitivity of the Open Loop Solution

In the previous section we verified that OCP(6.15)(𝑝0) and OCP(6.21)(𝑝0) have equivalent
optimal solutions. Now we compare the parametric sensitivities of their optimal control
functions. Therefore the sensitivities of OCP(6.21)(𝑝0) are transformed into the time domain.
In addition we compare the sensitivities of different state discretizations of OCP(6.15)(𝑝0).
All figures in this section contain six graphs:

Green: OCP(6.15)(𝑝0); single shooting.
Dark blue: OCP(6.15)(𝑝0); multiple shooting with 2 equally long shooting intervals.
Light blue: OCP(6.15)(𝑝0); multiple shooting with 3 equally long shooting intervals.
Cyan: OCP(6.15)(𝑝0); multiple shooting with 4 equally long shooting intervals.
Red: OCP(6.15)(𝑝0); full discretization.
Magenta: OCP(6.21)(𝑝0); full discretization; the sensitivities have been transformed

to normalized time for these plots.
The entry problem shows the same relationships between the state discretization and the
sensitivities as the analysis of the rocket car problem: Different state discretizations lead
to different sensitivity differentials. As clearly shown in Figures 6.5a, d, e, f, increasing the
number of shooting intervals, i.e. cutting off the direct dependency on the control variables,
leads to a decrease of the sensitivity of the initial control variables. This confirms the
empirical perception that multiple shooting decreases the sensitivity with respect to the
initial condition. The reduced control sensitivity must however be put in context with the
additionally gained sensitivities of the states. In particular the real-time approximation
scheme only leads to correct results, if the complete set of sensitivities of the entire solution
is used to approximate the perturbed optimum.
It is not surprising that also the sensitivities of the time domain formulation OCP(6.15)(𝑝0)
and the energy domain formulation OCP(6.21)(𝑝0) differ. The differences include changes in
magnitude, shifts and curvature structure (cf. Figure 6.5b and Figure 6.6b). It remains to
be seen, if these differences amount to any significant advantages or disadvantages for the
purpose of real-time solution approximation.
An NLP formulation that achieves an overall reduction of the sensitivity magnitude is likely
to result into a larger correction space of the RTS algorithm. Obviously multiple shoot-
ing reduces the sensitivity of 𝜎̇(𝜏 ) against perturbations in ℎ𝑠, 𝑣𝑠 and 𝛾𝑠 compared to single
shooting. Unfortunately the transition from the time domain to the energy domain does not
achieve a further general reduction of the sensitivity. While the sensitivity against perturba-
tions in ℎ𝑠, 𝜆𝑠, 𝛾𝑠 and 𝜆𝑓 is reduced, the sensitivity against perturbations in 𝜙𝑠, 𝜒𝑠, 𝜙𝑓 and 𝐿
is increased. This indicates a shift of the sensitive relationships rather than a segmentation
or redistribution.
The absolute value of the control sensitivity is highest for 𝜏𝑡 ∈ [0.2; 0.6]. The absolute
minima and maxima occur roughly for 𝜏𝑡 ∈ [0.3; 4.5]. By comparison with Figure 6.4a and
6.4b it is found, that this exactly matches the interval, in which the aerodynamic forces are
high. From the equations of motion we know that the lifting capability of the vehicle is
directly related to the control authority. The majority of the optimal perturbation adaption
thus happens, when the control authority is high.
In the following we focus on the parametric sensitivities of the full discretization transcrip-
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Figure 6.5: Parametric sensitivity of the nominal control function 𝜎̇ against perturbations in
the initial states.

tion. We are interested in identifying the perturbations which are most problematic to
compensate. Because the perturbations use different units and operate on different scales,
the magnitude of the sensitivity alone is not of significance. Important is the magnitude of
the sensitivity in relation with the expected perturbations. We define the impact 𝐼(𝑝(𝑗)) of
a scalar parameter 𝑝(𝑗) as the maximal point-wise change of the optimal control function
induced by the Taylor approximation of the optimal solution. The impact of parameter 𝑝(𝑗)

is thus

𝐼(𝑝(𝑗)) := |𝑝(𝑗) − 𝑝(𝑗)
0 | max

𝜏

⃒⃒⃒⃒
d𝜎̇

d𝑝(𝑗)
(𝜏)

⃒⃒⃒⃒
, 𝜏 ∈ 𝑇𝑢. (6.23)

The expected perturbations and their impact are shown in Table 6.3. The state perturbation
that we expect at the EIP is determined by the delivery accuracy of the previous mission
leg [Wol07]. Concerning the lift and drag the strongest perturbations are expected from
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Figure 6.6: Parametric sensitivity of the nominal control function 𝜎̇ against perturbations in
the final states.
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Figure 6.7: Parametric sensitivity of the nominal control function 𝜎̇ against perturbations in
the lift (a), drag (b) and mass (c).
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the atmospheric density and the aerodynamic coefficients. The aerodynamic coefficients are
assumed to be accurate to 5 %. For the atmospheric density we distinguish between local
and global perturbation. While local perturbations of up to 100 % are possible, the average
perturbation is much smaller. The nominal atmosphere model already uses an atmospheric
density profile, that is close to the lower limit. Reducing the density by more than ≈5 %
results into an infeasible problem. For a warmer atmosphere we assume a worst case of 25 %
average density increase. The perturbation of the aerodynamic coefficients and the density
have an additive effect.
The expected perturbations of the aerodynamic accelerations in case of a denser atmosphere
have the strongest impact on the control function. Among the initial states the perturbation
of the flight path angle has the highest impact in both problem formulations, followed by
altitude, longitude and latitude. These findings are in line with our expectations based
on literature results. It remains to check, if the controllability space covers the expected
perturbations.

Table 6.3: Perturbation impact estimate

Perturbation Expected Time Domain Energy Domain
at EIP max

⃒⃒⃒
d𝜎̇

d𝑝(𝑗)

⃒⃒⃒
𝐼(𝑝(𝑗)) max

⃒⃒⃒
d𝜎̇

d𝑝(𝑗)

⃒⃒⃒
𝐼(𝑝(𝑗))

𝛥𝐿 −0.1 to 0.3 2.07 · 10−1 6.24 · 10−2 3.32 · 10−1 9.98 · 10−2

𝛥𝐷 −0.1 to 0.3 4.07 · 10−1 1.22 · 10−1 4.07 · 10−1 1.22 · 10−1

𝛥𝑚 - 4.32 · 10−1 - 4.78 · 10−4 -
𝛥ℎ𝑠 1.2 · 103 m 1.51 · 10−5 1.83 · 10−2 8.74 · 10−6 1.05 · 10−2

𝛥𝜆𝑠 2.87 · 10−3 rad 6.57 1.89 · 10−2 2.72 7.83 · 10−3

𝛥𝜙𝑠 8.63 · 10−4 rad 8.74 7.55 · 10−3 10.98 9.48 · 10−3

𝛥𝑣𝑠 0.8 m
s 8.27 · 10−5 6.64 · 10−5 8.67 · 10−5 6.95 · 10−5

𝛥𝛾𝑠 3.43 · 10−3 rad 7.01 2.41 · 10−2 5.99 1.71 · 10−2

𝛥𝜒𝑠 4.32 · 10−3 rad 1.58 6.87 · 10−3 1.94 8.41 · 10−3

𝛥ℎ𝑓 - 4.27 · 10−5 - 4.09 · 10−5 -
𝛥𝜆𝑓 - 6.57 - 2.72 -
𝛥𝜙𝑓 - 8.93 - 11.40 -

Parametric Sensitivities For Closed Loop Control

For the application of 𝛩(𝑝) (Algorithm 3) we compute the parametric sensitivity differentials
for the control problems with the initial condition given by evaluating the nominal open
loop trajectory ⋆

𝑥 at the points 𝜏 (𝑖) ∈ 𝑇𝑛𝑜𝑚. In the interest of keeping the plots readable,
the images only show the sensitivity functions with respect to initial conditions of the first
half of the trajectory, i.e. 𝜏 (𝑖) ∈ 𝑇𝑛𝑜𝑚 ∧ 𝜏 (𝑖) ≤ 0.5.

𝜓(𝑖)
𝑠 (𝑥(0),𝑝(𝑖)

0 ) := ⋆
𝑥(𝜏 (𝑖); 𝑝0) +𝛥𝑥(𝑖)

𝑠 , 𝑝(𝑖)
0 :=

(︂
𝑝0

⋆
𝑥(𝜏 (𝑖); 𝑝0)

)︂
(6.24)

The sensitivity functions are represented on a grid of the normalized nominal open loop time.
The sensitivities of the control problem with initial condition 𝜓(𝑖)

𝑠 (𝑥(0),𝑝) are transformed
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from problem specific time to the normalized nominal open loop time 𝜏 on the interval
[𝜏 (𝑖); 1].
Figure 6.8 shows the sensitivity interpolation based on 60 OCPs using a full discretization
transcription. The left column shows the sensitivity functions obtained for the sub-problems.
The right column shows the surface fits based on two dimensional cubic spline interpolation.
The interpolation along the 𝑥-axis is with respect to the discretization of the control or
state function. The interpolation along the 𝑦-axis is with respect to the initial condition.
To distinguish between the interpolation directions the interpolation variable for the initial
condition (𝑦-axis) is denoted as 𝜏 𝑠 ∈ [0; 1]. The color of the surface indicates the sensitivity
magnitude to improve the plasticity of the image.
The initial and final conditions enforce some simple relations on the sensitivity surfaces,
that can be used for plausibility checks:

1. The sensitivity of a state against a perturbation in itself at the current time is one.
Example: Figure 6.8c and d show the sensitivity of the altitude against a perturbation
in altitude. It holds that

dℎ
dℎ𝑠

(𝜏 ,𝜏 𝑠) = 1, at 𝜏 = 𝜏 𝑠. (6.25)

2. The sensitivity of a state against any other perturbation at the current time is zero.
Example: Figure 6.8e and f show the sensitivity of the longitude against a perturbation
in latitude. It holds that

d𝜆
d𝜙𝑠

(𝜏 ,𝜏 𝑠) = 0, at 𝜏 = 𝜏 𝑠. (6.26)

3. States that are fixed at the terminal time must have a terminal sensitivity of zero.
Example: Figures 6.8c, d, e and f.

Due to the high number of states and parameters the surface fitting must be completely
automated to allow for a sensible preparation time of the closed loop data set. The surface
coefficients and the nominal open loop solution form the reference catalog that is required
during the online phase. With this data we are ready to test 𝛩(𝑝).
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Figure 6.8: Interpolated parametric sensitivity of the control, position and velocity against
perturbations in the mass and the position and velocity, occurring at different points of the
optimal trajectory of OCP(5.19)(𝑝0) (cf. Figure 5.13).
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6.3.3 Correction Space Analysis
Our goal is to show numerically that the correction space achieved by 𝛩(𝑝) is large enough
to cover the mission relevant parameter space, and thus 𝛩(𝑝) is a feasible option for closed
loop control. Furthermore we want to estimate the extent of the correction space and
compare it to the at all feasible space.
Such numerical demonstrations are typically based on Monte Carlo analysis. A Monte Carlo
method repeatedly chooses a random set of parameters and simulates the result. With a
sufficient number of trials, the mean of the trials converges against the true mean of the
investigated process. The main advantage of this method is that it captures conditional
decisions and the interdependencies of parameters. But performing Monte Carlo analysis
on a large parameter space requires a very high number of trials until this convergence can
be observed with significant accuracy.
In preparation for a Monte Carlo analysis we roughly estimate the extent of the correction
space. To this end we perform line searches in multiple search directions. We consider
perturbed parameters

𝑝 = 𝑝0 +𝛥𝑝 = 𝑝0 + 𝛼
𝛥𝑝

‖𝛥𝑝‖
= 𝑝0 + 𝛼 𝑑, 𝛼 ∈ R, 𝑑 ∈ R𝑛𝑝 , ‖𝑑‖ = 1. (6.27)

The factor 𝛼 is the perturbation strength and 𝑑 is the perturbation direction. Our goal is
to estimate the minimal and maximal values of 𝛼 for which 𝛩(𝑝0 +𝛼𝑑) computes a feasible
solution.

𝛼min(𝑝0, 𝑑) := arg min
𝛼

𝛩(𝑝0 + 𝛼𝑑), 𝛩(𝑝0 + 𝛼𝑑) feasible, (6.28a)
𝛼max(𝑝0, 𝑑) := arg max

𝛼
𝛩(𝑝0 + 𝛼𝑑), 𝛩(𝑝0 + 𝛼𝑑) feasible. (6.28b)

To find 𝛼min(𝑝0, 𝑑) and 𝛼max(𝑝0, 𝑑) we start at a small value of 𝛼 and perform line search
until the solution becomes infeasible and then use binary search to improve the accuracy
of the estimated boundary up to a certain threshold. A naive search algorithm that finds
𝛼min, 𝛼max is stated in Appendix H. The boundary value is found easily, thus we omit the
discussion of more efficient search variants.
To estimate the correction space boundary in perturbation direction 𝑑, the boundary search
algorithm is called at all sensitivity sampling points

𝑝(𝑖)
0 :=

(︂
𝑝0

⋆
𝑥(𝜏 (𝑖)

𝑠 ; 𝑝0)

)︂
, 𝜏 (𝑖)

𝑠 ∈ 𝑇𝑛𝑜𝑚. (6.29)

It remains to choose the search directions. Considering that the solution update for pertur-
bations in multiple scalar parameters is the superposition of the update for each individual
scalar, i.e. the Taylor expansion (5.13b) for the parameter vector

𝑝 = (𝐿,𝐷,𝑚,ℎ𝑓 ,𝜆𝑓 ,𝜙𝑓 ,ℎ𝑠,𝜆𝑠,𝜙𝑠,𝑣𝑠,𝛾𝑠,𝜒𝑠) (6.30)



118 6 On-Board Trajectory Computation for Mars Atmospheric Entry

can be written as

𝑧1(𝑝) = ⋆
𝑧0 + d𝑧

d𝑝(𝑝0)

⎛⎜⎝𝛥𝐿
...

𝛥𝜒𝑠

⎞⎟⎠ (6.31)

= ⋆
𝑧0 + d𝑧

d𝑝(𝑝0)

⎛⎜⎝1
...
0

⎞⎟⎠𝛥𝐿+ . . .+ d𝑧
d𝑝(𝑝0)

⎛⎜⎝0
...
1

⎞⎟⎠𝛥𝜒𝑠,

natural choices for 𝑑 are perturbations in single scalar parameters.

𝑑1 := (1,0,0,0,0,0,0,0,0,0,0,0), (6.32a)
𝑑2 := (0,1,0,0,0,0,0,0,0,0,0,0), (6.32b)

... (6.32c)
𝑑12 := (0,0,0,0,0,0,0,0,0,0,0,1) (6.32d)

In the following we show approximations of the correction space in the directions 𝑑1, ..., 𝑑12.
In addition we estimate the boundary of the feasible space in direction 𝑑 by using the
same line search algorithm, but calling the NLP solver WORHP on the perturbed problem,
instead of 𝛩(𝑝). The feasible space boundary is traced backwards, starting at the second last
discretization point. The solution is then used as start value at the third last discretization
point and so on. Due to the large computational effort required to find the boundary at all
discretization points, for multiple directions, the number of major SQP iterations is limited
to 30. Thus the definition of feasible in this case is: The NLP solver WORHP could find a
feasible solution in 30 or less iterations, using an optimization start value that was feasible
for the neighboring discretization point. The relative accuracy limit for the refinement
binary search is set to 5 %.
In the following figures white background shows the feasible space as determined by WORHP.
The correction space boundaries are colored as:

Black: Correction space of 𝛩(𝑝) for a single shooting transcription of the time
domain formulation (6.15). The closest nominal parameter is obtained
according to the independent variable time.

Blue: Correction space of 𝛩(𝑝) for a full discretization transcription of the time
domain formulation (6.15). The closest nominal parameter is obtained
using a weighted euclidean distance function, as discussed in Section 5.6.1.

Red: Correction space of 𝛩(𝑝) for a full discretization transcription of the en-
ergy domain problem formulation (6.21). The closest nominal parameter
is obtained using the same weighted euclidean distance function as for
the time domain problem.

The following images show the correction space w.r.t. normalized time; energy domain values
have been transformed accordingly. Figure 6.9 shows the boundaries for perturbations in the
aerodynamic accelerations and the mass. Figure 6.10 shows the boundaries for perturbations
in the initial state (Figure 6.11 shows a zoomed view).
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(a) Lift (b) Drag

(c) Mass

Figure 6.9: Correction space obtained by 𝛩(𝑝) for perturbations in different parameters
based on time domain single shooting (black), time domain full discretization (blue) and
energy domain full discretization (red). The feasible space as approximated by the NLP solver
WORHP is shown in white, the grey area indicates the infeasible space. The red crosses mark
the maximally expected perturbation at the EIP.
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(a) Altitude (b) Longitude

(c) Latitude (d) Velocity

(e) Flight path angle (f) Heading angle

Figure 6.10: Correction space obtained by 𝛩(𝑝) for perturbations in different parameters
based on time domain single shooting (black), time domain full discretization (blue) and
energy domain full discretization (red). The feasible space as approximated by the NLP solver
WORHP is shown in white, the grey area indicates the infeasible space. The red crosses mark
the maximally expected perturbation at the EIP.
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(a) Altitude (b) Longitude

(c) Latitude (d) Velocity

(e) Flight path angle (f) Heading angle

Figure 6.11: Zoom on the perturbations expected at the entry interface point, and the
enveloping correction space.
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Hypersonic Re-Entry (Interval from 0 to 0.3)

This phase is mainly characterized by a rapid loss of altitude (cf. Figure 6.3a). The system
can absorb much higher lift, but less lift or drag or too much drag can result into problem
infeasibility. The expected perturbations 𝛥𝐿,𝛥𝐷 ∈ [−0.10; 0.25] are close to the feasible
limit. A thinner atmosphere is clearly shown to be a critical situation, leading to an infea-
sible problem1. The feasible space for perturbations of the state is large compared to the
expected errors (cf. Table 6.3).
The full discretization correction space is large for all states in comparison to the expected
EIP errors. Concerning the lift and drag acceleration, the correction space covers the
expected errors at the EIP. There are feasible solutions for higher lift (𝛥𝐿 > 0.25), that are
not covered by the correction space. For reduced lift the correction space roughly matches
the feasibility boundary.
Full discretization shows to be superior to single shooting, achieving a universally larger
correction space. This confirms the result that was observed in the analysis of the rocket
car example.

Deceleration Phase (Interval from 0.3 to 0.65)

This phase is characterized through high aerodynamic accelerations (cf. Figure 6.4) and the
resulting strong deceleration (cf. Figure 6.3d). We see a strong reduction of the feasible
space for all parameters, except for positive lift and for a positive flight path angle.
If the correction space boundary lies in the interior of feasible space, the boundary is deter-
mined by the convergence failure of the corrector iteration (5.17). During the deceleration
phase the feasibility space is strongly reduced, such that no longer the convergence of (5.17),
but the feasibility boundary itself determines the extend of the correction space. In this case
the corrector iteration converges, but a change of the active set occurs, i.e. the trajectory
violates the path constraints or the terminal condition 𝑣𝑓 ≤ 450 m

s .

Supersonic Phase (Interval from 0.65 to 1)

The feasible space concerning all perturbations, except a higher flight path angle, is small.
The correction space is severely reduced. Figure (6.11) shows a zoom of Figure (6.10) to
the level of the expected perturbations at the EIP. For all states, except the latitude, there
exist feasible solutions for perturbations in either positive or negative direction.
Unfortunately the correction space achieved by 𝛩(𝑝) is very small in the supersonic phase.
Independently of the problem formulation or the chosen discretization, the corrector itera-
tion does not converge to a feasible solution, resulting into a correction space that is too
small to be practically applicable. Figure (6.11) shows that also the feasible space boundary
for all states is very close to the solution on at least one side.
The strongly constrained problem has a very negative effect on the corrector scheme: The
optimal solution sensitivities are based on the assumption, that all optimization variables
that are not on their box boundary can be used to adapt to a perturbation. But sensitivity

1 A perturbation of the atmospheric density equally affects lift and drag, which is not represented in this
test. Simulations indicate, that the simultaneous, equal perturbation of the aerodynamic forces is less
problematic than an isolated perturbation of either one.
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analysis does not include information on how large the tolerable perturbation is: Considering
a scalar parameter 𝑝(𝑗) = 𝑝(𝑗)

0 +𝛥𝑝(𝑗) the sensitivity d𝑧

d𝑝(𝑗) can be thought of as optimal, feasible
descent direction at the optimal solution for a parameter change 𝛥𝑝(𝑗). It is however not
taken into account, that the direction d𝑧

d𝑝(𝑗) might only be feasible for an infinitesimally small
perturbation 𝛥𝑝(𝑗).
The corrector step (5.17) relies on the assumption, that the directions d𝑧

d𝑞(𝑖) , 1 ≤ 𝑖 ≤ 𝑛𝑔 are
feasible with sufficient margin to adapt to the error remaining in solution after the forward
correction (5.13b). If this assumption is broken, either because the margin is too small, or
because there are multiple violated constraints with mutually adverse correction directions,
it is not possible to reduce the constraint error to zero and the solution adaption fails. If
on the other hand the NLP solver encounters the same situation, a new feasible descent
direction is determined, that eventually may allow to find a new feasible solution.
In the next sections we update the guidance strategy to account for the insufficient correction
space in the supersonic phase.

Comparison of the Correction Space for Time and Energy Discretization

Figure 6.9 and 6.10 do not show a clear advantage of either time or energy based formulation.
Concerning longitude 6.10b and flight path angle 6.10e the energy formulation achieves a
slightly better result, while for the rest of the states the performance is similar, except
for the initial altitude, where the energy domain formulation is inferior. The similarity
of the correction spaces suggest that, when taking into account the entire sensitivity set,
the seemingly significant differences in single sensitivities are not meaningful. A hypothe-
sis is that the changed dependencies in the dynamics are compensated by estimating the
integral w.r.t. time in the objective function. In conclusion the more complicated energy
domain analysis does not provide a significant correction space advantage and is thus not
recommended for the purpose of sensitivity based real-time adaption.

Other Observations

The correction space boundary is more jagged when using the weighted euclidean distance
function to determine the closest nominal parameter, compared to using the independent
variable. This is caused by switching the closest nominal parameter: 𝛩(𝑝) receives the
perturbed parameter 𝑝 = 𝑝0 + 𝛼𝑑 as an argument, but it has no knowledge of 𝑝0, 𝛼, 𝑑.
Depending on the determination of the closest nominal parameter, cf. (5.53c), the correction
starts from different 𝑝(𝑖)

0 and thus requires different correction directions and step sizes1.
Concerning a possible increased payload mass Figure 6.9c shows that the vehicle mass cannot
be increased by more than ≈60 kg. The upper mass boundary is determined by the ability to
reduce the terminal velocity below the threshold. The lower mass boundary on the interval
[0.4; 0.8] indicates that during this phase the mass, i.e. the gravitational acceleration, is the
deciding factor that prevents the vehicle from skipping the atmosphere.

1 The weights of the distance function for were determined using to the strategy discussed in Section
5.6.1 as well manual tuning
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Conclusions

The discretization of the state equations combined with the use of the state sensitivity in
the correction scheme results into a larger correction space. Full discretization or multi-
ple shooting with a high number of short shooting intervals are thus preferable to single
shooting.
The advantage of an energy domain formulation is a higher tolerance to a perturbed flight
path angle. Otherwise the time domain formulation achieves equal or better results. Both
formulations are feasible approaches.
The correction space is sufficient at the EIP and there is a large margin. A violation of
the EIP delivery accuracy up to a factor of three stays well within the convergence region,
which is a very good result.
The ability to react to perturbed aerodynamic accelerations is sufficient. Even with the
simple model of uniformly disturbed aerodynamic accelerations, the correction space cov-
ers a large part of the feasible space. It is noted that strong, local perturbations of the
atmosphere are not described well with this perturbation model. A refined perturbation
model, developed in collaboration with a robust parameter estimation technique could lead
to further improvement.
Unfortunately the correction space of 𝛩(𝑝) is not sufficient in the supersonic phase. The
divergence of the corrector scheme does not allow to determine a feasible trajectory even
for small perturbations. The hope that 𝛩(𝑝) could be used directly for closed loop control
command generation for the entire process is not fulfilled. At least in the supersonic phase
a different guidance and control strategy is required.

6.4 Two Degree of Freedom Guidance System
To improve the insufficient control envelope in the supersonic phase we propose to combine
𝛩(𝑝) with a drag controller (cf. Chapter 3.1) into a two-degree-of-freedom system. 𝛩(𝑝) is
used during the hypersonic phase and the deceleration phase to generate admissible, near
optimal state trajectories and the corresponding control sequences. From the adapted state
trajectory we obtain the drag acceleration profile, which is tracked by the drag controller.
Optionally the vertical-lift-over-drag ratio of the adapted trajectory can be used as feed
forward control. The drag controller generates the bank angle command which is the input
for the attitude control system, cf. Figure 6.12.

Trajectory 
Computation

Drag 
Tracking

 σcom 

Navigationp

L, D, E

 Dref(E)

L, D

 vLoDref(E)

Figure 6.12: Two-degree-of-freedom guidance system.
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The drag controller tracks the newest available, admissible trajectory. This capitalizes
on the ability of 𝛩(𝑝) to adapt to strong state errors during the hypersonic phase, while
compensating the weak performance in the supersonic phase using drag control.
Because the system is reliant on inertial navigation the accuracy of the state estimate
decreases. But the estimation accuracy of 𝛥𝐿,𝛥𝐷,𝛥𝑚 increases with flight time if the
estimator converges. The parameters 𝐿,𝐷,𝑚 are an adaptive model, which is used by both,
𝛩(𝑝) and the drag controller. When the ability to adapt the trajectory is lost, the last
parameter set, i.e. the newest model, is used for the remaining flight.
The guidance system can operate synchronously or asynchronously: In synchronous opera-
tion the trajectory generation and the tracking operate on fixed execution frequencies. The
trajectory generation operates at a low rate, while the tracking operates at a high rate.
Each time a new trajectory is accepted, the accumulated drag error in the integral term of
the tracking controller is reset to zero.
In asynchronous mode, the tracking still operates at a fixed, high rate, but the trajectory
generation is called only on demand. If the errors incurred from tracking the current tra-
jectory are low compared to the expected accuracy, a recomputation of the trajectory is
not required. A new trajectory is only requested when the state error or the total drag
error exceed a certain threshold. The asynchronous operation mode makes better use of the
integral action of the drag controller: In absence of significant errors, an unnecessary drag
error reset is prevented, which can lead to improved tracking performance.
The drag control law (3.31) is sensitive during the low drag segment and tends to overreact.
We compensate this behavior by using a one-sided gain scheduling, similar as suggested
by Tu [Tu98]. During the low drag, hypersonic phase we rely on the near-optimal control
determined by 𝛩(𝑝). With increasing drag, we smoothly transition to the drag controller.
Recall Section 3.1.2: The drag controller commands the vertical lift over drag ratio

𝑢com = 1
𝑏

(−𝑎+𝐷′′
𝑟 + 𝜈) (6.33)

with

𝜈 = −𝐾𝑃𝛥𝐷 −𝐾𝐷𝛥𝐷
′ −𝐾𝐼

ˆ
𝛥𝐷 d𝐸. (6.34)

The reference drag is given by the currently tracked trajectory: 𝐷′′
𝑟 := 𝐷′′

𝛩. The commanded
vertical lift over drag ratio is thus

𝑢com = −𝑎+𝐷′′
𝛩

𝑏⏟  ⏞  
𝑙

+ 𝜈

𝑏⏟ ⏞ 
𝑜

. (6.35)

In a low drag environment the outer, linear control 𝑜 behaves as expected, but the synthetic
linearization 𝑙 is sensitive and tends to overreact. To prevent the overreaction we extract
the reference lift-over-drag ratio 𝑢𝛩 from the near optimal solution provided by 𝛩(𝑝) and
replace the linearizing control during the low drag phase:

𝑢com := 𝑢𝛩 + 𝑠

(︂
−𝑎+𝐷′′

𝛩

𝑏
− 𝑢𝛩

)︂
+ 𝜈

𝑏
. (6.36)
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𝑠 : R+ → [0; 1] is a gain function, scheduled on sensed drag acceleration 𝐷. In the low drag,
hypersonic phase 𝑠 is close to zero, thus the command is determined by 𝑢𝛩. Note that the
linear drag error feedback 𝑜 is always active. This results into a damped, but as early as
possible reaction to drag error. With increasing drag acceleration the gain increases to one
and 𝑢𝛩 fades out. For 𝑠 we use a smooth sigmoid function, which is scaled such that the
gain reaches one at 50 % of the expected maximal acceleration.
This strategy shows very good results. In most cases the commanded bank angle can be
realized by the attitude control system with only a short delay, which is most important
during the high drag segment of the flight.
The design is detailed in Figure 6.13, showing the data flow and the computation steps of
the proposed system. The complete trajectory information consists of the state trajectories,
the control sequence, and the dynamic model parameters. The acceleration profiles can be
derived from this data as required.
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Figure 6.13: Data flow and computation steps of the two-degree-of-freedom guidance system.

6.5 Numerical Verification and Validation
The two-degree-of-freedom guidance is tested in a closed loop Monte Carlo campaign to as-
sess the landing accuracy dispersion. In the following we detail the environment simulation,
the considered perturbations and the guidance system configuration, before presenting the
guidance performance results. Finally the guidance algorithm is tested on a flight represen-
tative processor.
The transcription and the analysis of the nominal solution and the parametric sensitivity dif-
ferentials is performed by the code Sensitivity Analysis Framework (SAF) by D. Seelbinder.
The solution of the parametric NLP and the computation of the sensitivity differentials is
performed by the NLP solver WORHP [Was13].
The numeric quality of the sensitivity differentials strongly depends on the knowledge of
the true sparsity structure of the Hessian matrices in (5.10). Standard finite difference
routines do not provide sufficient accuracy. The required derivatives are computed using
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the automatic differentiation library ADOL-C [Wal12] which allows derivative computation
close to machine precision.
The online part of the guidance algorithm is implemented in Embedded Matlab. Automatic
code generation is used to obtain the guidance algorithm in C-code. For the processor
in the loop test the tool chain TASTE [Per10] is used to specify the interfaces of the
partition between the GNC algorithm and the simulation environment. The setup of the
communication architecture and the final compilation for the LEON2 processor is also
performed by TASTE, using the generated C-code. The major steps of the work-flow are
summarized in Figure 6.14.
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Figure 6.14: Verification and validation steps.

6.5.1 Monte Carlo Simulation

Environment and Perturbations

We integrate the translational equations of motion over a spherical, rotating planet, using
(2.15) and (2.17). The simulation does not include rotational dynamics or an attitude
control system, but we simulate the delay in realizing the commanded bank angle using a
PID controller that tracks the guidance command. This setup is referred to as 3.5 degree
of freedom simulation.
The main goal of this test campaign is to show, that the proposed guidance system is
robust to perturbations. Hence we consider perturbations, that by far exceed the expected
perturbation magnitude, cf. Table 6.3.
The atmosphere models are obtained from the European Mars Climate Database [Lew99].
We consider two extreme conditions:

1. The first one is a cold scenario, with an extremely clear atmosphere (low dust). The
dust opacity is the minimum observed over 6 Mars years and further decreased by
30 %, combined with a solar minimum thermosphere.
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2. The warm scenario corresponds to dusty atmosphere conditions. The dust opacity
is set to the observed maximum and increased by an additional 30 %, topped with a
solar maximum thermosphere.

As a first step, for each simulation an atmosphere is interpolated between those two extreme
conditions. In a second step the interpolated atmosphere is perturbed with a sinusoidal.
The amplitude and frequency are randomly chosen in specified intervals. The maximal
amplitude is 50 % at maximum altitude, and reduces to 10 % at parachute opening. This
resembles the expected strong, local perturbations of the upper atmosphere. Examples of
the perturbation coverage are shown in Figure 6.15 for the atmospheric density and the
wind speed.
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Figure 6.15: Random sinusoidal perturbation of atmosphere parameters during Monte Carlo
simulation.

The aerodynamic coefficients are perturbed with a random sinusoidal of up to 10 % ampli-
tude. We also consider a perturbation of the mass of up to 20 kg absolute value.
Table 6.4 shows the perturbation intervals of the initial state. The intervals around 𝜆0 and
𝜙0 roughly correspond to a maximum error of 20 km in downrange and 10 km in crossrange
direction at the EIP. The errors are equally distributed, i.e. no error covariance has been
assumed.

Table 6.4: Perturbed simulation parameters

State Value Parameter max. Amp.
ℎ𝑠,0 +/- 3000 m 𝜌 temperature + 50%
𝜆𝑠,0 +/- 0.3265∘ 𝑐𝐿 10%
𝜙𝑠,0 +/- 0.1632∘ 𝑐𝐷 10%
𝑣𝑠,0 +/- 200 m/s wind speed 200 m/s
𝛾𝑠,0 +/- 1∘ mass up to 20 kg
𝜒𝑠,0 +/- 1∘
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GNC Configuration

The trajectory generation runs synchronously at 0.1 Hz. We use the time domain problem
formulation (6.15) with a multiple shooting discretization. The problem is discretized using
Runge-Kutta 4, on a nonuniform control grid with 81 points, which are determined by
iterative grid refinement, such that the global discretization error is minimized. We use 20
shooting arcs with 4 control steps in each arc.
The trajectory tracking is performed at 10 Hz. The newest available, feasible trajectory is
tracked, infeasible trajectories are discarded.
The guidance input is the vector

𝑝 = (𝑝𝐿,𝑝𝐷,𝑝𝑚,ℎ̃,𝜆̃,𝜙,𝑣,𝛾,𝜒̃). (6.37)

The input is provided by a performance navigation function, which is simplified such that
the estimated state is equal to the true state, falsified with white noise. The parameters
𝑝𝐿,𝑝𝐷,𝑝𝑚 are estimated from the true lift- and drag- acceleration using an extended Kalman
filter to demonstrate that the estimation of the required model parameters is feasible based
on the available sensor data, i.e. lift- and drag acceleration.

Simulation Results

In the following we discuss the dispersion around the nominal parachute opening point. The
following results are based on 2000 Monte Carlo cases. Figure 6.16 shows the horizontal
dispersion at parachute opening. The cross marks the position at which the simulation
termination criterion is reached. The line connected to the termination position is the
orientation of the terminal velocity vector.
Note that the desired terminal state is not a stable point of the system. Thus the stopping
condition of the simulation, i.e. the point at which the error is measured, is of importance.
We base the stopping criterion on the same variable, energy, as the trajectory tracking.
The simulation is stopped, when the estimated energy is equal to the energy of the desired
terminal state. In this way the state error is directly related to the tracking error. An
alternative approach is to stop the simulation when either the horizontal euclidean target
distance is no longer decreasing (point of closest approach), or when a minimum altitude
value is reached. This would yield an equally valid, but different, error projection.
Table 6.5 quantifies the dispersion in terms of downrange, crossrange, altitude and velocity
errors. The quantification assumes a normal distribution of the error. It is noted though,
that this assumption is not accurate. The true covariance of the error is unknown.
With a 95 % confidence (𝜇+ 2𝜎) the downrange error is below 10.2 km, the crossrange error
is below 2.7 km and the altitude error is below 1.7 km. Figures 6.17 and 6.18 show the
𝜎-dispersion ellipses. The radial, horizontal miss distance is lower than 9.2 km with 95 %
confidence. The Monte Carlo state trajectories are shown in Figure 6.19. Lastly the path
constraints are shown in Figure 6.20. In none of the cases a path constraints becomes
active.
To provide an assessment of the achieved results, we note that the threshold for Mars
precision landing is attributed to roughly 10 km radial error, which has been undercut. A
true qualitative comparison of the guidance law against other algorithms is very difficult,
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because of the high number of influential factors that make the scenario and the performance
metric unique. A strict comparison against an error threshold, or an alternative guidance
and control algorithm requires a standardization of the problem scenario, the perturbations,
the simulation fidelity and the error quantification. Because of the complex nature of the
problem the effect of changes in these criteria is not obvious, but could introduce a strong
bias in the comparison. In terms of qualitative performance assessment we can state that
the perturbations considered in this study are on par or exceed the perturbations considered
in the references cited through the thesis, and we achieve a very satisfactory accuracy. In the
same context we mention the major simplifications made in this test: a simplified attitude
control, and a simplified state and parameter estimation.
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Figure 6.16: Dispersion at parachute opening plotted against 5 km, 10 km and 15 km radi.
The incident lines indicate the terminal velocity direction.

Table 6.5: State error at parachute opening. The confidence values assume a normal
distribution.

Type Mean (𝜇) Std. Deviation (𝜎) 68 % (1𝜎) 95 % (2𝜎) 99.7 % (3𝜎)
Horizontal Dist. [km] 3.9 2.6 <6.6 <9.3 <11.9
Downrange Error [km] −2.4 3.8 <6.4 <10.3 <14.1
Crossrange Error [km] −0.4 1.1 <1.6 <2.8 <3.8
Altitude Error [km] −0.4 0.6 <1.1 <1.8 <2.5
Velocity Error [m

s ] 4 6 <10 <16 <22
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Figure 6.17: 𝜎-confidence ellipses at parachute opening (3D).

Figure 6.18: 𝜎-confidence ellipses at parachute opening (top down). The incident lines
indicate the terminal velocity direction.
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(a) Altitude (b) Longitude

(c) Latitude (d) Velocity

(e) Flight path angle (f) Heading angle

(g) Bank Angle (h) Ground track

Figure 6.19: State trajectories of the Monte Carlo simulations.
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(a) Heat flux (b) Dynamic pressure

(c) Load factor

Figure 6.20: Path constraints during Monte Carlo simulations.
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Lessons Learned

The negative downrange and altitude mean values (cf. Table 6.5) indicate a bias towards
undershooting the target. The undershoot is a consequence from underestimating the atmo-
spheric density: A local, negative density perturbation in the upper atmosphere can result
into a temporary estimation of a thinner atmosphere. The adapted trajectory based on this
estimation lets the vehicle dive deeper into the atmosphere to compensate the lack of drag.
By the time the local density perturbation is moderated, or even swings into the opposite,
the already applied corrective action was too strong. In the next trajectory iteration, when
the density estimation has returned to a higher value, the vehicle cannot produce enough
lift, to sufficiently moderate the earlier decision. Some of the bank angle profiles in Figure
6.19g show a bank angle of 0∘ (full lift-up) for an extend period of time. This leads to the
divergence of drag tracking and the loss of crossrange control. This situation is very difficult
to avoid for worst-case aerodynamic perturbations, due to the low 𝐿

𝐷
ratio of the vehicle.

Gain tuning and a delay of the model adaption could possibly improve the situation, but a
true solution to this problem seems only possible through an increase of the 𝐿

𝐷
ratio, i.e. a

higher control authority margin.
In the hypersonic phase, the flown bank angle profiles 6.19g show a periodic pattern, roughly
corresponding to the handover times of new trajectories. While the new trajectory is optimal
with respect to the newest available information, the switch of the reference trajectory
disrupts the tracking and requires a reset of the accumulated drag error (integral control).
A future evolution could investigate asynchronous trajectory generation: A new trajectory
is only requested, when the tracking error grows above a certain threshold.
In rare cases we see rapid changes of the realized bank angle in the supersonic phase. In these
cases the pseudo bank angle tracking is not able to follow the commanded value and tends
to overshoot. The rapid command changes can be caused by high frequency perturbations
of the lift- or drag acceleration, or they indicate overtuning of the drag controller. In any
case the gain scheduling of the drag controller and the interaction between the guidance
command and the (pseudo) attitude control can be further improved.

6.5.2 LEON2 Processor in the Loop Test
Space mission on-board computer systems must fulfill special requirements to function re-
liably in space environment. CPUs and memory must be designed to withstand radiation
and to operate under wide temperature conditions. The computing power of space qualified
CPUs is at least one order of magnitude lower than that of current consumer CPUs. The
restriction of computational power from space qualified hardware is an important factor for
the design of GNC algorithms. The validation on space qualified, or equivalent, hardware
is therefore a significant step in proving the feasibility of a GNC algorithm.
An example for a flight representative hardware environment is ESA’s Reference Archi-
tecture System Test-Bed for Avionics (RASTA). RASTA uses LEON processors, which are
available in fault tolerant, radiation hardened and space qualified versions. RASTA runs the
real-time operating system RTEMS1, which is also available in flight qualified versions.
In a real-time environment computational tasks are scheduled according to priority. A task

1 Real-Time Executive for Multiprocessor Systems
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with higher priority preempts the CPU from a task with lower priority. If a task does not
finish in the allotted time slot an overrun fault occurs, and the lower priority task is shut
down. This can leave the computation result in an undefined state. This must be avoided
at all costs, as it can lead to subsequent errors and ultimately to the loss of control and loss
of the mission.
Commonly GNC algorithms are developed and tested in high level rapid prototyping en-
vironments, like e.g. Matlab/Simulink. But the execution in a real-time environment typi-
cally requires an implementation in a hardware-related programming language, like e.g. C
or Ada.
In this project the guidance and control algorithm has been implemented in Embedded
Matlab. Algorithms in Embedded Matlab can, under certain conditions, be automatically
reimplemented in C code, using automatic code generation tools. The obtained C code is
used as basis to compile executable binaries for the RTEMS real-time operating system.
This approach has the advantage of enabling tests in a real-time environment without a
manual reimplementation. The guidance and control algorithm is cut from the simulation
loop (cf. Figure 1.1), and prepared to run on the LEON2 processor. The software framework
TASTE [Per10] is used to support the compilation for the LEON2 target, the scheduling of
the real-time tasks, and the setup of the communication pipelines between different GNC
modules and the environment simulation.
Figure 6.21 shows a RASTA test bench in the ESA-ESTEC control hardware laboratory.
A similar processor-in-the-loop setup is available at DLR Bremen, where the test was per-
formed.
Table 6.6 shows the test results: the computation time of relevant algorithm steps on a
standard Linux desktop PC, in comparison with the computation time on the RASTA.
The desktop PC is between 27 and 60 times faster. While the nearest neighbor search
and the 𝑝- and 𝑞-correction steps are computed in few milli seconds, the evaluation of the
constraint function takes about 33 ms. With a runtime of 350 ms the evaluation of the
sensitivity surfaces takes significantly longer. A maximum of 15 𝑞-iterations was allowed
in the Monte Carlo simulation. This results into a total execution time of 989 ms for one
trajectory computation on the LEON2. Keep in mind that these result are obtained on

Figure 6.21: Processor-in-the-loop setup: simulation control (left), RASTA system with
LEON2 processing board (middle), environment simulation (right).
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the basis of a research and development implementation. Further speedup can be expected
from industrial quality flight code.

Table 6.6: Runtime comparison

Computation i7, 2.9 GHz LEON2, 80 MHz Factor
Nearest parameter search 0.17 ms 6 ms ≈ 35
Sensitivity interpolation 13 ms 350 ms ≈ 27
𝑝-step (5.13b) 0.05 ms 3 ms ≈ 60
𝑞-step (5.15) 0.21 ms 9 ms ≈ 43
𝐺(𝑧,𝑝) 0.88 ms 33 ms ≈ 36

The processor-in-the-loop test demonstrates, that it is feasible to run the trajectory compu-
tation at a maximal rate of about 1 Hz. Considering safety margins, a realistic execution
frequency is roughly one magnitude slower. Thus the trajectory generation could be sched-
uled at 0.1 Hz, with an expected mean delay of the computation result of about 1 s.
This demonstrates the real-time capability of the guidance approach in a flight equivalent
environment. Using an industrial quality implementation and the next generation of proces-
sors it is realistic to achieve a sufficiently high execution frequency, such that the trajectory
planning algorithm can be used directly for control command generation.





CHAPTER 7
Conclusion

This work connects control challenges of atmospheric entry guidance to mathematical meth-
ods from nonlinear optimization, parametric sensitivity analysis and dynamic programming.
The major development steps and scientific contributions of this thesis are:

1. The synthesis of a local, closed loop, near-optimal feedback law for nonlinear dynamic
systems. The approach extends preceding results in parametric sensitivity analysis
of NLP problems to a closed loop control law. This includes the numerical analysis
and characterization of effects of different transcription methods and problem formu-
lations on parametric sensitivities of the related NLPs, in a high precision numerical
environment.

2. The application of the proposed feedback law to the problem of controlling the atmo-
spheric entry of a small capsule into the Martian atmosphere, in close resemblance
of the ESA Mars Precision Lander reference scenario. The capabilities of the feed-
back law are analyzed and its limitations are carved out. The proposed control law
is combined with the well-known drag tracking method, which results into a highly
adaptable, two degree-of-freedom guidance system.

3. The numerical validation, verification and performance analysis of the combined, novel
guidance system in a flight representative software and hardware environment. This
includes the test of the guidance algorithm in a strict real-time environment on a
flight representative LEON2 processor, as well as a software-in-the-loop Monte Carlo
campaign.

The following conclusions are separated into three parts: In the first part we state our
conclusion concerning the developed atmospheric entry guidance system. In the second
part we sketch ideas for future research directions. The third part concludes the thesis.

7.1 Entry Guidance Performance
A major control challenge of atmospheric entry is the strongly nonlinear dynamic system,
and the nonlinear state constraints. Our treatment of the entry problem as OCP, and the
direct transcription into an NLP is a very good approach to obtaining a reference solution
of the underlying ODE system while respecting the constraints. But for in-flight trajectory
computation and control this approach is not computationally feasible on the targeted
hardware.

139
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We meet the need for minimal computational load by sacrificing on-board optimization. In-
stead we rely on a snapshot of the derivative of the optimality conditions, i.e. the parametric
sensitivities. The approximation of the extremal field around the nominal solution via para-
metric sensitivities is computationally highly efficient, but at the same time has a strong
drawback: The method depends on a constant active set. This leaves us unable to adjust
to perturbations which cause a change of the active set, this includes activating bounds on
the control variables and path constraints on the states. This disadvantage can be partially
compensated by a congenial reformulation of the OCP. The predictive capability of the
approach also allows early detection of critical trajectories, such that a combination with
ulterior methods is possible. But ultimately the inability to change the active set remains
a strong disadvantage, which in the end prevents the application of the sensitivity-based
feedback past the deceleration phase. An approximation of the reachable space reveals that
the ability to shape the trajectory is severely diminished after deceleration. But while a
method based on online optimization would be able to capitalize on the remaining degrees
of freedom, our approach fails in this flight regime.
The second major challenge are the uncertainties in the atmospheric model. The atmo-
sphere is very close to a chaotic system, hence a prediction is very difficult. Our method
profits from an accurate atmospheric model, and the performance decreases if the model
is wrong. An advantage is that the parametric problem formulation easily allows for an
adaption of the model, provided that the true parameters are known. This connects to
the third challenge: The scarce availability of environmental information. Solely based on
the IMU measurements it is very difficult to robustly adjust the model. We use a simple
parametrization with few parameters, and limit the maximal adjustment to a predetermined
confidence interval. The design of a filter to estimate parameters in the inner functions of
the atmosphere model could be a subject of future work.
The illustrated weaknesses are for the most part overcome by combining the sensitivity based
update with the drag tracking paradigm. Drag tracking is less dependent on an accurate
atmosphere model and the drag control law is valid up until the parachute opening. A drag
profile however relates to a predetermined downrange. Downrange errors, and other state
errors at the EIP, are handled very well by the new feedback law. The combination of the
sensitivity based trajectory update and drag tracking thus capitalizes on the strength of
both methods, while compensating each others weaknesses.
The Monte Carlo results show that the combined guidance system is able to compensate
perturbations that by far exceed the expected flight envelope. The processor-in-the-loop
test demonstrates that the guidance system is feasible on currently available space qualified
hardware.
The weak points that remain are the handling of path constraints and the lack of a formal
prove, guaranteeing the convergence of the feedback law for perturbations up to a prede-
termined magnitude. It is however noted that these disadvantages are commonly shared
amongst nonlinear control methods.

7.2 Way Forward
A driving factor for the research in this thesis was the specialization on a highly restricted
computing environment with very limited computational resources. In the light of increasing
computational power, this restriction will relax with future hardware generations, even for



7.3 Closing 141

space applications. Without this restriction, solving optimization problems online in real-
time becomes feasible. Online optimization based control methods, such as the receding
horizon approach introduced in Section 3.2.3, have revolutionary potential.
Online optimization enables the consideration of constraints on the actuator and the state.
Real-time optimal control has the potential to increases the region of controllability while
at the same time achieving optimal performance. Control algorithms based on real-time
convex optimization are already reality.
Sensitivity based control requires a thorough, case-by-case analysis for every application.
The general principle is applicable to a wide range of problems, but it is not a plug-and-play
solution. Parametric sensitivity analysis also requires exceptionally accurate numeric meth-
ods for derivative computation and OCP-NLP transcription, that at the time of writing are
not commonly available. The preliminary work to achieve sensitivity based control is thus
comparable to the effort to apply the receding horizon principle. If sufficient computational
power is available, the receding horizon method is clearly superior.
Sensitivity based control is a precursor of online optimization based methods. A possible
next step are hybrid systems, which perform online optimization at a low rate and use
sensitivity based updates in between. Parametric sensitivities can be obtained after each
optimization for a very small additional computational cost. This removes the need to
precompute the sensitivity differentials at multiple points of the trajectory. Sensitivity
based methods can be used to bridge the time between optimization runs.
Another option is to incorporate the Taylor expansion of the optimal solution into a receding
horizon controller to obtain an improved initial guess for the next optimization run. The
same principle can also be used to counteract the delay caused by the computation time:
Once a receding horizon step finishes, a Taylor expansion of the optimal solution is used to
adapt to the change of the state since the computation started.

7.3 Closing
The proposed guidance system and the lessons learned during its development will be used
by the German Aerospace Center as input to Germany’s reusable launch vehicle develop-
ment program. The proposed approach demonstrates the power of optimal control and
parametric sensitivity analysis. The author hopes that the discussion in this thesis con-
tributes to stimulating further research in optimization based control methods to enable
the development of flexible, robust, high performance guidance and control systems.
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APPENDIX A
Coordinate Reference Frames

Table A.1: Coordinate frames used for the definition of the state vector

Planet Centered Inertial Frame
Origin Axis Definition

Planet center
𝑋𝑃 𝐶𝐼 in the equatorial plane, towards the vernal equinox (J2000).
𝑌𝑃 𝐶𝐼 completes the right hand system.
𝑍𝑃 𝐶𝐼 is parallel to the planet’s angular momentum vector.

Planet Centered Planet Fixed Frame
Origin Axis Definition

Planet center
𝑋𝑃 𝐶𝑃 𝐹 lies in the equatorial plane, towards the zero meridian.
𝑌𝑃 𝐶𝑃 𝐹 completes the right hand system.
𝑍𝑃 𝐶𝑃 𝐹 is parallel to the planet’s angular momentum vector.

North-East-Down Frame
Origin Axis Definition

Vehicle CoM
𝑋𝑁𝐸𝐷 lies inside the local horizontal plane, pointing north.
𝑌𝑁𝐸𝐷 lies inside the local horizontal plane, pointing east.
𝑍𝑁𝐸𝐷 is normal to the local horizontal plane, pointing down.

Trajectory Axis Frame
Origin Axis Definition

Vehicle CoM
𝑋𝑇 𝐴 lies in direction of the ground velocity vector.
𝑌𝑇 𝐴 completes the right hand system, pointing starboard.
𝑍𝑇 𝐴 inside the vertical plane, spanned by 𝑍𝑁𝐸𝐷 and the ground

velocity vector.
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Table A.2: Coordinate frames used for the definition of the aerodynamic attitude

Body Reference Frame
Origin Axis Definition

Vehicle CoM
𝑋𝑏 lies on the longitudinal vehicle axis, pointing ahead.
𝑌𝑏 completes the right hand system, pointing starboard.
𝑍𝑏 lies inside the vertical plane of symmetry, pointing down.

Vertical Air-Path Axis Frame
Origin Axis Definition

Vehicle CoM
𝑋𝑎𝑣 lies in direction of the air relative velocity vector.
𝑌𝑎𝑣 completes the right hand system, pointing starboard.
𝑍𝑎𝑣 inside the vertical plane, spanned by 𝑍𝑛𝑒𝑑 and the air relative

velocity vector.
Note: When there is no wind, the ground velocity and the air relative velocity are
identical, then the air-path axis frame coincides with the trajectory axis frame.

Air-Path Axis Frame
Origin Axis Definition

Vehicle CoM
𝑋𝑎 lies in direction of the air relative velocity vector.
𝑌𝑎 completes the right hand system, pointing starboard.
𝑍𝑎 inside the vehicle’s vertical plane of symmetry, pointing down.

Note: When the vehicle is not banking, the air-path axis frame coincides with the
vertical air-path axis frame.



APPENDIX B
Spaces and Norms

Definition B.1 (Vector Space)
A vector space consists of a set 𝑉 who’s elements are called vectors, a field 𝐹 who’s elements
are called scalars, and two operations:

1. Vector addition takes two vectors 𝑢, 𝑣 ∈ 𝑉 and produces a third vector 𝑤 ∈ 𝑉 , written
𝑢+ 𝑣 = 𝑤.

2. Scalar multiplication takes a scalar 𝑎 ∈ 𝐹 and a vector 𝑣 ∈ 𝑉 and produces a new
vector 𝑤 ∈ 𝑉 , written 𝑎𝑣 = 𝑤.

The two operations must satisfy the following axioms for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and 𝑎, 𝑏 ∈ 𝐹 :

𝑢+ 𝑣 = 𝑣 + 𝑢 commutativity of vector addition
(𝑢+ 𝑣) + 𝑤 = 𝑢+ (𝑣 + 𝑤) associativity of vector addition

𝑢+ 0 = 𝑢 existence of additive identity, 0 ∈ 𝑉
𝑢+ (−𝑢) = 0 existence of additive inverse, −𝑢 ∈ 𝑉

(𝑎𝑏)𝑢 = 𝑎(𝑏𝑢) associativity of scalar multiplication
(𝑎+ 𝑏)𝑢 = 𝑎𝑢+ 𝑏𝑢 distributivity of scalar sums
𝑎(𝑢+ 𝑣) = 𝑎𝑢+ 𝑎𝑣 distributivity of vector sums

1𝑢 = 𝑢 existence of multiplicative identity, 1 ∈ 𝐹

Definition B.2 (Norm)
Given a vector space 𝑉 over a field 𝐹 a norm is a mapping ‖·‖ : 𝑉 → R+

0 with the following
properties for all 𝑢, 𝑣 ∈ 𝑉 and 𝑎 ∈ 𝐹 :

‖𝑢‖ = 0⇒ 𝑢 = 0 zero vector
‖𝑎𝑢‖ = |𝑎| ‖𝑢‖ absolute homogeneity

‖𝑢+ 𝑣‖ ≤ ‖𝑢‖+ ‖𝑣‖ triangle inequality

where | · | is the absolute value.

Theorem B.3 (Equivalence of Norms on Finite Dimensional Vector Spaces)
On a finite dimensional vector space 𝑉 all norms are equivalent: For two norms ‖·‖

𝑎
and
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‖·‖
𝑏

there exist positive, bounded constants 𝑐, 𝐶 such that

𝑐 ‖𝑣‖
𝑎
≤ ‖𝑣‖

𝑏
≤ 𝐶 ‖𝑣‖

𝑎
, 𝑣 ∈ 𝑉.

Equipping a vector space 𝑉 with a norm ‖·‖ allows to measure the distance between two
vectors 𝑢, 𝑣 ∈ 𝑉 by using the distance metric 𝑑(𝑢,𝑣) = ‖𝑢− 𝑣‖ induced by the norm. More
generally a metric is defined as:

Definition B.4 (Metric)
A metric 𝑑 over a set 𝑋 is a mapping 𝑑 : 𝑋 ×𝑋 → R+

0 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

𝑑(𝑥,𝑦) ≥ 0 non-negativity
𝑑(𝑥,𝑦) = 0⇔ 𝑥 = 𝑦 identity of indiscernibles
𝑑(𝑥,𝑦) = 𝑑(𝑦,𝑥) symmetry
𝑑(𝑥,𝑧) ≤ 𝑑(𝑥,𝑦) + 𝑑(𝑦,𝑧) triangle inequality

The pair (𝑋,𝑑) is called metric space.

Definition B.5 (Cauchy Sequence)
A sequence 𝑥𝑛, 𝑛 ∈ N of elements of a metric space (𝑋,𝑑) is called Cauchy sequence, if

For all 𝜀 > 0, ∃𝑛0 ∈ N, for all 𝑛,𝑚 ≥ 𝑛0 : 𝑑(𝑥𝑛,𝑥) < 𝜀.

A metric space (𝑋,𝑑) is called complete, if every Cauchy sequence in (𝑋,𝑑) is convergent. A
common strategy to show the convergence of a sequence if the limit is unknown, is showing
that the sequence is a contraction and then applying the Fixpoint Theorem of Banach:

Definition B.6 (Contraction)
Let (𝑋,𝑑) be a metric space and 𝐴 ⊆ 𝑋 a complete subspace. A contraction on 𝐴 is a
mapping 𝑓 : 𝐴→ 𝐴, with the property that ∃𝐿, 0 ≤ 𝐿 < 1 such that for all 𝑥, 𝑦 ∈ 𝐴

𝑑(𝑓(𝑥),𝑓(𝑦)) ≤ 𝐿𝑑(𝑥,𝑦)

The smallest value 𝐿 is called the Lipschitz constant of 𝑓 .

Theorem B.7 (Fixpoint Theorem of Banach)
Let (𝑋,𝑑) be a metric space and 𝐴 ⊆ 𝑋 a complete subspace. Furthermore let 𝑓 : 𝐴→ 𝐴 be
a contraction on (𝐴,𝑑). Then the sequence 𝑥𝑘+1 = 𝑓(𝑥𝑘) converges to a uniquely determined
fixpoint ⋆

𝑥 for all start values 𝑥𝑠 ∈ 𝐴.

For later purposes in the following important spaces and norms are introduced, oriented at
[Ger09].

Definition B.8 (Banach space)
A complete and normed vector space is called Banach space.

Definition B.9 (Space of Continuous Functions)
𝐶([𝑎,𝑏],R) is the space of continuous functions 𝑥 : [𝑎,𝑏]→ R.

Definition B.10 (Space of 𝑘-Times Continuously Differentiable Functions)
𝐶𝑘([𝑎,𝑏],R), 𝑘 > 0 is the space of 𝑘-times continuously differentiable functions 𝑥 : [𝑎,𝑏]→ R.
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Definition B.11 (𝐿𝑝-Norm)
The 𝐿𝑝-norm is

‖𝑥‖𝑝 :=
(︂ˆ 𝑏

𝑎

|𝑥(𝑡)|𝑝 d𝑡
)︂ 1

𝑝

1 ≤ 𝑝 ≤ ∞ (B.11a)

‖𝑥‖∞ := sup
𝑎≤𝑡≤𝑏

|𝑥(𝑡)| (B.11b)

𝐶1 equipped with the norm ‖ · ‖∞ is a Banach space that is of importance in the calculus of
variation. In Optimal Control the problems are usually defined on less restrictive function
spaces than 𝐶1. Commonly used are the Lebesque space 𝐿∞ and the Sobolev space 𝑊 1,∞.

Definition B.12 (Lebesque Space)
𝐿∞([𝑎,𝑏],R) is the space of all measurable functions 𝑥 : [𝑎,𝑏] → R which are essentially
bounded:

ess sup
𝑎≤𝑡≤𝑏

|𝑥(𝑡)| := inf
𝑁⊂[𝑎,𝑏]
𝜇(𝑁)=0

sup
𝑡∈[𝑎,𝑏]∖𝑁

|𝑥(𝑡)| <∞ (B.12a)

𝐿∞([𝑎,𝑏],R) is a Banach space with the norm

‖𝑥‖∞ := ess sup
𝑎≤𝑡≤𝑏

|𝑥(𝑡)| (B.12b)

Definition B.13 (Sobolev Spaces)
𝑊 𝑞,𝑝([𝑎,𝑏],R) is the space of all absolutely continuous functions 𝑥 : [𝑎,𝑏] → R that have
absolutely continuous derivatives up and including to order 𝑞 − 1 and it holds that

‖𝑥‖𝑞,𝑝 <∞. (B.13a)

The norm ‖ · ‖𝑞,𝑝 is given by

‖𝑥‖𝑞,𝑝 :=
(︃

𝑞∑︁
𝑘=0

‖𝑥(𝑘)‖𝑝
𝑝

)︃ 1
𝑝

(B.13b)

‖𝑥‖𝑞,∞ := max
0≤𝑘≤𝑞

‖𝑥(𝑘)‖∞ (B.13c)

where | · |(𝑘) denotes the derivative of order 𝑘. ‖ · ‖𝑝 denotes the 𝐿𝑝-norm. 𝑊 𝑞,𝑝([𝑎,𝑏],R),
1 ≤ 𝑞, 𝑝 ≤ ∞ with the norm ‖ · ‖𝑞,𝑝 are Banach spaces.



APPENDIX C
Strong and Weak Minima

Admissible function pairs (𝑥,𝑢) for the solution of an OCP are compared based on the
metric induced by the norm of their vector space. A minimum is therefore characterized
by the underlying norm. In optimal control the control function is commonly assumed to
be in the Lebesque space 𝐿∞. A control function with points of discontinuity results into
a state trajectory which is continuous, but not continuously differentiable everywhere. The
trajectory is a piecewise continuously differentiable function belonging to the Sobolev space
𝑊 1,∞. The minimum of an optimal control problem can be characterized based on the
underlying norm:

Definition C.1 (Strong Minimum)
The pair ( ⋆

𝑥,
⋆
𝑢) ∈ 𝑊 1,∞ × 𝐿∞ is called strong minimum of problem (4.7) if it exists 𝜀 > 0

such that

𝐽( ⋆
𝑥,

⋆
𝑢) ≤ 𝐽(𝑥,𝑢)

for all admissible (𝑥,𝑢) with ‖𝑥− ⋆
𝑥‖∞ < 𝜀.

Definition C.2 (Weak Minimum)
The pair ( ⋆

𝑥,
⋆
𝑢) ∈ 𝑊 1,∞×𝐿∞ is called weak minimum of problem (4.7) if it exists 𝜀 > 0 such

that

𝐽( ⋆
𝑥,

⋆
𝑢) ≤ 𝐽(𝑥,𝑢)

for all admissible (𝑥,𝑢) with ‖𝑥− ⋆
𝑥‖1,∞ < 𝜀 and ‖𝑢− ⋆

𝑢‖∞ < 𝜀.

A strong minimum is also a weak minimum but not vice versa. A weak minimum is more
restrictive concerning the admissible comparable control functions: For a weak minimum
the 𝜀-neighborhood around a control function with discontinuities only includes control
functions with identical points of discontinuity. For a strong minimum the set of compared
control functions includes those with variations in the points of discontinuity.
In optimal control the interest is on finding a strong minimum.
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APPENDIX D
Factorized Form of the Drag Dynamics

In the derivation of the drag control law we use the fact that we can factor out 𝑢vLoD from
the second energy derivative of drag.

𝐷′′ = 𝑎(𝐷,𝐷′,ℎ,𝑣,𝛾) + 𝑏(𝐷,𝐷′,ℎ,𝑣,𝛾)𝑢vLoD.

The linearizing terms 𝑎 and 𝑏 are:

𝑎 = 1
4𝐷2𝑣𝑐4𝑟4

𝑆

[︂
𝐷2𝑣5𝜌𝑟4

(︂
d𝑐
dℎ

)︂2 (︂ dℎ
d𝐸

)︂2 d2𝐶𝐷

d𝑀 2
+ 4𝐷2𝑣4𝑐𝜌𝑟4 d𝑐

dℎ
dℎ
d𝐸

(︂
d𝑐
dℎ

dℎ
d𝐸

d𝐶𝐷

d𝑀 − d𝑣
d𝐸

d2𝐶𝐷

d𝑀 2

)︂
−

𝑣3𝑐2𝑟2

[︂
4𝐷2𝑣𝑟2 d𝑐

dℎ

(︂
dℎ
d𝐸

)︂2 d𝜌
dℎ

d𝐶𝐷

d𝑀 +

2𝜌
[︂

d𝐶𝐷

d𝑀

[︂
𝐷2𝑣𝑟2 d2𝑐

dℎ2

(︂
dℎ
d𝐸

)︂2

+ d𝑐
dℎ

(︂
𝑟2

(︂
6𝐷2 dℎ

d𝐸
d𝑣
d𝐸 + 𝑣 sin(𝛾)d𝐷

d𝐸

)︂
+𝐷 cos2(𝛾) (𝜇𝑀 − 𝑣2𝑟)

)︂]︂
−

𝐷2𝑟2

(︂
d𝑣
d𝐸

)︂2 d2𝐶𝐷

d𝑀 2

]︂]︂
+ 𝑣𝑐3 d𝐶𝐷

d𝑀

[︂
𝜌

[︂
2𝐷2𝑟4 d𝑣

d𝐸

(︂
4𝑣 d𝑣

d𝐸 − 1
)︂
−

2𝜇𝑀𝑟 sin(𝛾)
(︂
𝑣𝑟

d𝐷
d𝐸 +𝐷𝑟

d𝑣
d𝐸 + 2𝐷𝑣 dℎ

d𝐸

)︂
+2𝐷𝜇𝑀 cos2(𝛾) (𝑣2𝑟 − 𝜇𝑀)

]︂
+4𝐷2𝑣2𝑟4 dℎ

d𝐸
d𝑣
d𝐸

d𝜌
dℎ

]︂
+𝑐4𝐶𝐷[︂

𝑣2𝑟2

(︂
d𝜌
dℎ

(︂
2𝑟2

(︂
4𝐷2 dℎ

d𝐸
d𝑣
d𝐸 + 𝑣 sin(𝛾)d𝐷

d𝐸

)︂
+ 2𝐷 cos2(𝛾) (𝜇𝑀 − 𝑣2𝑟)

)︂
+ 2𝐷2𝑣𝑟2

(︂
dℎ
d𝐸

)︂2 d2𝜌

dℎ2

)︂
+

4𝜌
(︂
𝐷2𝑟4 d𝑣

d𝐸

(︂
𝑣

d𝑣
d𝐸 − 1

)︂
− 𝜇𝑀𝑟 sin(𝛾)

(︂
𝑣𝑟

d𝐷
d𝐸 +𝐷𝑟

d𝑣
d𝐸 + 2𝐷𝑣 dℎ

d𝐸

)︂
+𝐷𝜇𝑀 cos2(𝛾) (𝑣2𝑟 − 𝜇𝑀)

)︂]︂]︂

𝑏 = 𝑆 cos(𝛾)
2𝑣𝑐2𝑟2

[︂
𝑣3𝜌𝑟2 d𝑐

dℎ
d𝐶𝐷

d𝑀 + 𝜇𝑀𝑣𝑐𝜌
d𝐶𝐷

d𝑀 + 𝑐2𝐶𝐷

(︂
2𝜇𝑀𝜌− 𝑣2𝑟2 d𝑐

dℎ

)︂]︂

The drag tracking input is 𝐷,𝐷′,ℎ,𝑣,𝛾 and the derivatives d𝑐

dℎ
, d2𝑐

dℎ2 , d𝜌

dℎ
, d2𝜌

dℎ2 , d𝐶𝐷

d𝑀
, d2𝐶𝐷

d𝑀2 are
available numerically as part of the model and must only be evaluated at the current state.
The energy derivatives of the states, the drag and the Mach number have been derived in
Chapter 3.1.2 and can also be evaluated at the current state. Thus all terms in 𝑎 and 𝑏 are
known.
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APPENDIX E
NLP Formulation Details

E.1 Variable Ordering
To reference the control and state variables on the grids 𝑇𝑢 and 𝑇𝑥 the matrices (E.1) are
defined.

𝑈 ∈ R𝑙𝑢 × R𝑛𝑢 (E.1a)
𝑋 ∈ R𝑙𝑥 × R𝑛𝑥 (E.1b)

The rows of 𝑈 are the control vectors on the grid 𝑇𝑢 = {𝜏 (1),...,𝜏 (𝑙𝑢)}. An element 𝑢(𝑖,𝑗) ⊂ 𝑈
is the value of control channel 𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑢 at 𝜏 (𝑖) ⊂ 𝑇𝑢. A column 𝑢(:,𝑗) ∈ R𝑙𝑢 ⊂ 𝑈 is the
discretized control function for control channel 𝑗. A column 𝑢(𝑖,:) ∈ R𝑛𝑢 ⊂ 𝑈 is the control
vector at normalized time 𝜏 (𝑖) ∈ 𝑇𝑢. Analogously the rows of matrix 𝑋 are the state vectors
at the shooting nodes 𝑇𝑥.
The logical ordering of the decision variables is chosen as

𝑧 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑢(:,1))
...

(𝑢(:,𝑛𝑢))
(𝑥(:,1))

...
(𝑥(:,𝑛𝑥))
𝑡𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, |𝑧| = 𝑛𝑧 = 𝑛𝑢𝑙𝑢 + 𝑛𝑥𝑙𝑥 + 1. (E.2)

The ordering prioritizes the variable type over the dimension index, followed by the temporal
index. This allows to easily extract state trajectories and control sequences as coherent
blocks from the decision variables.

E.2 Constraint Ordering
The state at the shooting nodes is part of the decision variables, but the state at intermediate
points must be obtained via the recursive evaluation of the discretized dynamics on each
shooting interval. Let 𝑙𝑆1 ,...,𝑙𝑆𝑙𝑥−1 be the number of control grid points in the shooting
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intervals 𝑆1,...,𝑆𝑙𝑥−1. Let

𝑋̃𝑆𝑘
∈ R𝑙𝑆𝑘 × R𝑛𝑥 , 1 ≤ 𝑘 < 𝑙𝑥 − 1, (E.3)

be the state trajectory obtained from integration of the control function on interval 𝑆𝑘. An
element 𝑥̃(ℎ,𝑗)

𝑆𝑘
∈ 𝑋̃𝑆𝑘

is the value of state function 𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑥 after ℎ − 1, 1 ≤ ℎ ≤ 𝑙𝑆𝑘

integration steps in shooting interval 𝑘, 1 ≤ 𝑘 < 𝑙𝑥. When the differential constraints are
satisfied the last entry in each shooting interval matches the state at the next shooting node
(or the terminal point). Thus the defect 𝑑(𝑘,𝑗) of state function 𝑗 at 𝜏 (𝑘) ∈ 𝑇𝑥 can be written
as the defect vector

𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑(1,1)

𝑑(2,1)

...
𝑑(𝑙𝑥−1,1)

𝑑(1,2)

𝑑(2,2)

...
𝑑(𝑙𝑥−1,2)

...
𝑑(1,𝑛𝑥)

𝑑(2,𝑛𝑥)

...
𝑑(𝑙𝑥,𝑛𝑥)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥̃
(𝑙𝑆1 ,1)
(𝑆1) − 𝑥̃

(1,1)
(𝑆2)

𝑥̃
(𝑙𝑆2 ,1)
(𝑆2) − 𝑥̃

(1,1)
(𝑆3)

...
𝑥̃

(𝑙𝑆𝑙𝑥−1 ,1)
(𝑆𝑙𝑥−1) − 𝑥(𝑙𝑢,1)

𝑥̃
(𝑙𝑆1 ,2)
(𝑆1) − 𝑥̃

(1,2)
(𝑆2)

𝑥̃
(𝑙𝑆2 ,2)
(𝑆2) − 𝑥̃

(1,2)
(𝑆3)

...
𝑥̃

(𝑙𝑆𝑙𝑥−1 ,2)
(𝑆𝑙𝑥−1) − 𝑥(𝑙𝑢,2)

...
𝑥̃

(𝑙𝑆1 ,𝑛𝑥)
(𝑆1) − 𝑥̃(1,𝑛𝑥)

(𝑆2)

𝑥̃
(𝑙𝑆2 ,𝑛𝑥)
(𝑆2) − 𝑥̃(1,𝑛𝑥)

(𝑆3)
...
𝑥̃

(𝑙𝑆𝑙𝑥−1 ,𝑛𝑥)
(𝑆𝑙𝑥−1) − 𝑥(𝑙𝑢,𝑛𝑥)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (E.4)

The path constraints 𝑐(𝑥,𝑢) are evaluated at every point of 𝑇𝑢 using the integrated state
vectors 𝑥̃(𝑖,:)

𝑆𝑘
given by the rows of the matrices 𝑋̃𝑆𝑘

. The discretized path constraints can
then be written as:

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐(1,1)

...
𝑐(𝑙𝑢,1)

𝑐(1,2)

...
𝑐(𝑙𝑢,𝑛𝑐)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐(𝑥̃(1,:)
(𝑆1),𝑢

(1,:))
...
𝑐(𝑥̃(𝑙𝑆𝑙𝑥−1 ,:)

(𝑆𝑙𝑥−1) ,𝑢(𝑙𝑢,:))
𝑐(𝑥̃(1,:)

(𝑆1),𝑢
(1,:))

...
𝑐(𝑥̃(𝑙𝑆𝑙𝑥−1 ,:)

(𝑆𝑙𝑥−1) ,𝑢(𝑙𝑢,:))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 0. (E.5)

Element 𝑐(𝑖,𝑗) corresponds to path constraint 𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑐 evaluated at 𝜏 (𝑖) ∈ 𝑇𝑢.
Constraints on the admissible control set 𝑢 ∈ U ⊂ R𝑛𝑢 can either be implemented as
additional path constraints, or alternatively most NLP solvers support the use of simple
lower and upper bounds on the decision variables. These so called box constraints must be
constant values. Thus the corresponding entries in the Hessian matrix ∇𝐿2

𝑧 are zero, which
can be exploited by the NLP solver. If possible the use of box constraints is preferable from
a numeric point of view compared to using additional path constraints.
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The boundary constraints 𝛹 are

𝛹 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜓(1,1)(𝑥(1,1))
...

𝜓(1,𝑛𝑟𝑠 )(𝑥(1,𝑛𝑟𝑠 ))
𝜓(2,1)(𝑥(𝑙𝑢,1))

...
𝜓(2,𝑛𝑟𝑓

)(𝑥(𝑙𝑢,𝑛𝑟𝑠 ))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 (E.6)

All constraints are joined in the function 𝑔 : R𝑛𝑧 → R𝑛𝑔 , with 𝑛𝑔 = 𝑛𝑥𝑙𝑥 +𝑛𝑐𝑙𝑢 +𝑛𝑟𝑠
+𝑛𝑟𝑓

.

𝑔(𝑧)(𝑚) :=
(︂
𝐷
𝛹

)︂
= 0 𝑚 = 1,...,𝑛𝑒𝑞 (E.7a)

𝑔(𝑧)(𝑚) := 𝐶 ≤ 0 𝑚 = 𝑛𝑒𝑞 + 1,...,𝑛𝑔 (E.7b)

This ordering results into a diagonally banded structure in the blocks 𝐶 and 𝐷. If the
temporal index would be prioritized higher than the component index the result would be
a block diagonal structure.



APPENDIX F
NLP Scaling

NLPs are predominately solved using Newton or Quasi-Newton methods. The convergence
rate of these algorithms depends on the conditioning of the KKT matrix (4.63). Scaling
techniques aim at improving the condition of the KKT matrix. Even if theoretically an
optimal solution is attainable, ill conditioned problems prevent the solution for numerical
reasons. In practice problem scaling thus very important. In the following the quantities of
a scaled NLP are stated following Büskens [Büs98].
Let 𝑎(𝑖) ∈ R+, 𝑖 = 1,...,𝑛𝑧 be the scale factors of the decision variables 𝑧 ∈ R𝑛𝑧 and let
𝑏(𝑖) ∈ R+, 𝑖 = 1,...,𝑛𝑔 be the scale factors of the constraint function 𝑔 ∈ R𝑛𝑔 . Let 𝐴 :=
𝑑𝑖𝑎𝑔(𝑎(1),...,𝑎(𝑛𝑧)) ∈ R𝑛𝑧 × R𝑛𝑧 , 𝐵 := 𝑑𝑖𝑎𝑔(𝑏(1),...,𝑏(𝑛𝑔)) ∈ R𝑛𝑔 × R𝑛𝑔 and 𝛼 ∈ R+. Then the
scaled system quantities, denoted by subscript 𝑠, can be written as:

𝑧𝑠 = 𝐴𝑧, (F.1a)
𝑓𝑠(𝑧) = 𝛼𝑓(𝑧), (F.1b)
𝑔𝑠(𝑧) = 𝐵𝑔(𝑧), (F.1c)
𝜇𝑠 = 𝛼𝐸−1𝜇, (F.1d)

𝐿𝑠(𝑧𝑠,𝜇𝑠) = 𝑓𝑠(𝑧𝑠) + 𝜇ᵀ
𝑠𝑔𝑠(𝑧𝑠) (F.1e)

The scaled Jacobian with respect to the scaled variables can be written in terms of the
unscaled quantities as

∇𝑧𝑠
𝑔𝑠(𝐴−1𝑧𝑠) = ∇𝑧𝑠

𝐵𝑔(𝐴−1𝑧𝑠) = 𝐵 ∇𝑧𝑔(𝑧) 𝐴−1. (F.2)

The Hessian with respect to the scaled variables and function can be obtained as:

∇2
𝑧𝑠
𝐿𝑠(𝑧𝑠,𝜇𝑠) = ∇2

𝑧𝑠
𝑓𝑠(𝐴−1𝑧𝑠) +∇2

𝑧𝑠
𝜇ᵀ

𝑠𝑔𝑠(𝐴−1𝑧𝑠) (F.3)
= 𝛼∇2

𝑧𝑠
𝑓(𝐴−1𝑧𝑠) +∇2

𝑧𝑠
𝛼(𝐵−1𝜇)ᵀ𝐵𝑔(𝐴−1𝑧𝑠)

= 𝛼∇2
𝑧𝑠
𝑓(𝐴−1𝑧𝑠) +∇2

𝑧𝑠
𝛼𝜇ᵀ𝑔(𝐴−1𝑧𝑠)

= 𝛼∇2
𝑧𝑠
𝐿(𝐴−1𝑧𝑠,𝜇)

= 𝛼𝐴−1∇2
𝑧𝐿(𝑧,𝜇)𝐴−1.

The remaining task is to chose the scale factors 𝐴, 𝐵 and 𝛼. Finding optimal scale factors
is not a trivial task that leads to another nonlinear optimization problem [Büs98].
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158 F NLP Scaling

A simpler, heuristic approach based on the optimization start value is suggested in [Bet10]:
For an OCP the NLP scaling can be determined using the magnitude of the physical vari-
ables in the OCP regime. All decision variables and constraints are normalized to an interval
𝐼 = [−𝑟,𝑟], 𝑟 ∈ R+. Only one scale factor is determined for each dimension of the state, the
control and the path constraints.
It is heuristically assumed that the magnitude of the state/control/constraint dimensions
will stay roughly the same during the control process, thus the same scale factor is used at
all discretization points. In practice this has shown to result into an improved condition of
the constraint Jacobian.
Determining the scale factors automatically requires a nontrivial optimization start value
𝑧 ̸= 0. Let 𝑥̃(𝑖,𝑗) be the start value for state function 𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑥, at 𝜏 (𝑖) ∈ 𝑇𝑥. The scale
factors of the state functions are determined as

𝑎(1)
𝑥 := min

𝑖

𝑟

|𝑥̃(𝑖,1)|
, 1 ≤ 𝑖 ≤ 𝑙𝑥, |𝑥̃(𝑖,1)| ̸= 0 (F.4a)

...
𝑎(𝑛𝑥)

𝑥 := min
𝑖

𝑟

|𝑥̃(𝑖,𝑛𝑥)|
, 1 ≤ 𝑖 ≤ 𝑙𝑥, |𝑥̃(𝑖,𝑛𝑥)| ̸= 0. (F.5a)

Let 𝐴𝑥 = diag(𝑎(1)
𝑥 ,...,𝑎(𝑛𝑥)

𝑥 ) ∈ R𝑛𝑥 × R𝑛𝑥 . Then the scaled state variables are

𝑥𝑠 = 𝐴𝑥𝑥. (F.6)

The scale factors 𝑎(1)
𝑢 ,...,𝑎(𝑛𝑢)

𝑢 of the control function are determined analogously.
The scale factors 𝑏(1)

𝑐 ,...,𝑏(𝑛𝑐)
𝑐 of the path constraints are determined by evaluating the path

constraints at the optimization start value and finding their maximal value:

𝑏(1)
𝑐 := min

𝑖

𝑟

|𝑐(𝑖,1)(𝑥̃(𝑖,:), 𝑢̃(𝑖,:))| , 1 ≤ 𝑖 ≤ 𝑙𝑢, 𝑐(𝑖,1) ̸= 0 (F.7a)

...
𝑏(𝑛𝑐)

𝑐 := min
𝑖

𝑟

|𝑐(𝑖,𝑛𝑐)(𝑥̃(𝑖,:), 𝑢̃(𝑖,:))| , 1 ≤ 𝑖 ≤ 𝑙𝑢, 𝑐(𝑖,𝑛𝑐) ̸= 0. (F.8a)

The defect constraints 𝐷 (E.4) and boundary constraints 𝛹 (E.6) are scaled using the
already known scale factors of the state 𝑎(1)

𝑥 ,...,𝑎(𝑛𝑥)
𝑥 . Thus 𝐵 is given by using 𝑎(1)

𝑥 ,...,𝑎(𝑛𝑥)
𝑥

and 𝑏(1)
𝑐 ,...,𝑏(𝑛𝑐)

𝑐 .
The scale factor 𝛼 of the objective function is set as

𝛼 := 𝑟

|𝑓(𝑧)| . (F.9)

This scales the objective and the constraints roughly to the same magnitude.
For ill conditioned problems with an inaccurate initial guess it has proven successful to
recalculate the scale factors after a number of Newton steps.



APPENDIX G
Entry Optimal Control Problem: Objective Function Weights

The weighting coefficients used to obtain the nominal solution discussed in Section 6.3.1 are
shown in the following table.

Table G.1: Objective function weights

Term Weight Value Time
Domain

Energy
Domain

Percent

Terminal velocity 𝑤𝑉 1 · 10−3 0.136 0.137 ∼8 %
Heat load 𝑤𝐻 1 · 101 0.491 0.508 ∼31 %
Vertical lift 𝑤𝐿 5 · 102 0.608 0.582 ∼38 %
Bank angle rate 𝑤𝑅 1 · 10−5 0.359 0.367 ∼23 %
Optimal value 1.595 1.596
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APPENDIX H
Algorithm for the Approximation of the Correction Space Boundary

Considering a disturbed parameter vector

𝑝 = 𝑝0 +𝛥𝑝 = 𝑝0 + 𝛼
𝛥𝑝

‖𝛥𝑝‖
= 𝑝0 + 𝛼 𝑑, 𝛼 ∈ R, 𝑑 ∈ R𝑛𝑝 , ‖𝑑‖ = 1. (H.1)

the goal is to find

𝛼min(𝑝0, 𝑑) := arg min
𝛼

𝛩(𝑝0 + 𝛼𝑑), 𝛩(𝑝0 + 𝛼𝑑) feasible, (H.2a)
𝛼max(𝑝0, 𝑑) := arg max

𝛼
𝛩(𝑝0 + 𝛼𝑑), 𝛩(𝑝0 + 𝛼𝑑) feasible. (H.2b)

One option to approximate the values 𝛼min(𝑝0 𝑑) and 𝛼max(𝑝0 𝑑) is a brute-force method,
combining line search and binary search, as in Algorithm (4). The algorithm arguments
are the nominal parameter value 𝑝0, the perturbation direction 𝑑, the percentile accuracy
𝑎𝑐𝑐 ∈ [0; 1], the line search step size 𝑖𝑛𝑐 > 1 and the step size sign 𝑠𝑔𝑛 ∈ {−1, 1}.
The algorithm performs line search on in direction 𝑑 until the feedback law fails. The bound-
ary is then narrowed down using binary search in the interval between the last successfully
handled perturbation and the first failure, until the desired accuracy is reached. For 𝑠𝑔𝑛 = 1
the result is 𝛼max(𝑝0, 𝑑), for 𝑠𝑔𝑛 = −1 the result is 𝛼min(𝑝0, 𝑑).
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Algorithm 4 Find correction space boundary
1: procedure FindBoundary(𝑝0, 𝑑, 𝑎𝑐𝑐, 𝑖𝑛𝑐, 𝑠𝑔𝑛)
2: 𝛼 := 1
3: 𝑓𝑎𝑖𝑙 := 0
4: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 := 0
5: 𝑑𝑖𝑓𝑓 :=∞
6: while 𝑓𝑎𝑖𝑙 == 0 or 𝑑𝑖𝑓𝑓 > 𝑎𝑐𝑐 do
7: 𝑝 = 𝑝0 + 𝑠𝑔𝑛 𝛼 𝑑
8: {𝑢̃(𝑝), 𝑥̃(𝑝)} ← Feedback(𝑝)
9: if isAdmissible(𝑢̃(𝑝), 𝑥̃(𝑝)) then

10: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝛼
11: else
12: 𝑓𝑎𝑖𝑙 = 𝛼
13: end if
14: if 𝑓𝑎𝑖𝑙 == 0 then
15: 𝛼 = 𝑖𝑛𝑐 𝛼
16: else
17: 𝛼 = 0.5 (𝑓𝑎𝑖𝑙 + 𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
18: end if
19: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ̸= 0 then
20: 𝑑𝑖𝑓𝑓 = |(𝑓𝑎𝑖𝑙 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠)/(𝑠𝑢𝑐𝑐𝑒𝑠𝑠)|
21: end if
22: end while
23: return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
24: end procedure
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