5 research outputs found

    Benchmarks and Controls for Optimization with Quantum Annealing

    Get PDF
    Quantum annealing (QA) is a metaheuristic specialized for solving optimization problems which uses principles of adiabatic quantum computing, namely the adiabatic theorem. Some devices implement QA using quantum mechanical phenomena. These QA devices do not perfectly adhere to the adiabatic theorem because they are subject to thermal and magnetic noise. Thus, QA devices return statistical solutions with some probability of success where this probability is affected by the level of noise of the system. As these devices improve, it is believed that they will become less noisy and more accurate. However, some tuning strategies may further improve that probability of finding the correct solution and reduce the effects of noise on solution outcome. In this dissertation, these tuning strategies are explored in depth to determine the effect of preprocessing, annealing, and post-processing controls on performance. In particular, these tuning strategies were applied to a real-world NP (nondeterministic polynomial time)-hard optimization problem and portfolio optimization. Although the performance improved very little from tuning the spin reversal transforms, anneal time, and embedding, the results revealed that reverse annealing controls improved the probability of success by an order of magnitude over forward annealing alone. The chain strength experiments revealed that increasing the strength of the intra-chain coupling improves the probability of success until the intra-chain coupling strengths begin to overpower the inter-chain couplings. By taking a closer look at each physical qubit in the embedded chains, the probability for each qubit to be faulty was visualized and was used to develop a post-processing strategy that outperformed the standard, which chooses a logical qubit value from a broken chain. The results of these findings provide a guide for researchers to find the optimal set of controls for their unique real-world optimization problem to determine whether QA provides some benefit over classical computing, lay the groundwork for developing new tuning strategies that could further improve performance, and characterize the current hardware for benchmarking future generations of QA hardware

    Adiabatic Quantum Computation Applied to Deep Learning Networks

    No full text
    Training deep learning networks is a difficult task due to computational complexity, and this is traditionally handled by simplifying network topology to enable parallel computation on graphical processing units (GPUs). However, the emergence of quantum devices allows reconsideration of complex topologies. We illustrate a particular network topology that can be trained to classify MNIST data (an image dataset of handwritten digits) and neutrino detection data using a restricted form of adiabatic quantum computation known as quantum annealing performed by a D-Wave processor. We provide a brief description of the hardware and how it solves Ising models, how we translate our data into the corresponding Ising models, and how we use available expanded topology options to explore potential performance improvements. Although we focus on the application of quantum annealing in this article, the work discussed here is just one of three approaches we explored as part of a larger project that considers alternative means for training deep learning networks. The other approaches involve using a high performance computing (HPC) environment to automatically find network topologies with good performance and using neuromorphic computing to find a low-power solution for training deep learning networks. Our results show that our quantum approach can find good network parameters in a reasonable time despite increased network topology complexity; that HPC can find good parameters for traditional, simplified network topologies; and that neuromorphic computers can use low power memristive hardware to represent complex topologies and parameters derived from other architecture choices

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore