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Abstract

Quantum annealing (QA) is a metaheuristic specialized for solving optimization problems

which uses principles of adiabatic quantum computing, namely the adiabatic theorem.

Some devices implement QA using quantum mechanical phenomena. These QA devices

do not perfectly adhere to the adiabatic theorem because they are subject to thermal and

magnetic noise. Thus, QA devices return statistical solutions with some probability of

success where this probability is affected by the level of noise of the system. As these

devices improve, it is believed that they will become less noisy and more accurate. However,

some tuning strategies may further improve that probability of finding the correct solution

and reduce the effects of noise on solution outcome. In this dissertation, these tuning

strategies are explored in depth to determine the effect of preprocessing, annealing, and post-

processing controls on performance. In particular, these tuning strategies were applied to a

real-world NP (nondeterministic polynomial time)-hard optimization problem and portfolio

optimization. Although the performance improved very little from tuning the spin reversal

transforms, anneal time, and embedding, the results revealed that reverse annealing controls

improved the probability of success by an order of magnitude over forward annealing alone.

The chain strength experiments revealed that increasing the strength of the intra-chain

coupling improves the probability of success until the intra-chain coupling strengths begin

to overpower the inter-chain couplings. By taking a closer look at each physical qubit in

the embedded chains, the probability for each qubit to be faulty was visualized and was

used to develop a post-processing strategy that outperformed the standard, which chooses

a logical qubit value from a broken chain. The results of these findings provide a guide

for researchers to find the optimal set of controls for their unique real-world optimization

problem to determine whether QA provides some benefit over classical computing, lay the
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groundwork for developing new tuning strategies that could further improve performance,

and characterize the current hardware for benchmarking future generations of QA hardware.
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Chapter 1

Introduction

1.1 Motivations to Study Quantum Computation

The past 70 years hold a rich history of computational advancement. The first digital

vacuum tube computer with prestored programs was the Electronic Numerical Integrator

and Computer (ENIAC), developed in 1943. It was Turing-complete and used by the US

Army’s Ballistic Research Laboratory to calculate artillery firing tables during World War

II [169]. The first transistor-based computing machine, IBM 608, was made commercially

available in 1957 with 3, 000 germanium transistors [143]. After the invention of the transistor

came the integrated circuit, which made circuit design manufacturing cheaper, faster, and

more scalable. As of June 2020, the most powerful supercomputer is Supercomputer Fugaku

from Japan, which has a theoretical peak performance of 513, 854.7 TFlop/s and 7, 299, 072

cores [1]. Today, high-performance computers are rigorously used for diverse applications,

including weather and climate modeling, nuclear and materials research, data analytics, and

machine learning. These applications are pushing humanity toward a future with precision

medicine, natural disaster prediction and preparation, and a deeper understanding of physical

systems [11]. However, some key limitations in classical computational methods could slow

down or even halt progress.
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1.1.1 Limit to Moore’s Law

The transistor is the building block of computational technology as we know it. A transistor is

essentially a switch that either blocks or allows the flow of electrons by raising and lowering

a potential barrier. The on/off electron flow registers as bits of information that can be

set to either 0 or 1. Transistors create a network of logic gates that, when combined, do

operations such as addition, subtraction, and multiplication [85]. The ability to perform

these basic operations allows computers to do almost any calculation as the number of

transistors increases, which includes everything from running a simple calculator program

to graphically intensive video games and scientific simulations.

To reach today’s power of computation, manufactures have used the scalability of

integrated circuits to continuously develop better chips with more transistors. Moore’s Law

is a trend that shows the number of transistors on an integrated circuit doubling every two

years. It was first introduced by Gordon Moore, cofounder of Intel, in a 1965 paper in which

he predicted that this doubling would continue for at least a decade. Moore’s Law is now

the guide for computational advancement in the semiconductor industry and has held true

for nearly five decades [117]. Today, manufacturers have scaled production-ready transistors

down to 6 nm by developing high-purity silicon wafers in cleanrooms and using more precise

production methods such as chemical etching, particle beams, and molecular optics [83].

The power of a computer directly depends on the number of transistors it uses.

Metal-oxide-semiconductor field effect transistors (MOSFETs) and complementary metal-

oxide semiconductors (CMOSs) are the most efficient and predominantly used transistor

technologies to date. Unfortunately, as manufacturers continue to shrink the size of the

CMOS and MOSFET, quantum mechanical effects become more dominant, which can

introduce a significant amount of error. The state-of-the-art transistor is currently a 5 nm

transistor developed by Samsung for mass production in 2019 [Mass], and Samsung has

begun working on a 3nm transistor in 2020 [Schilling]. However, these dimensions make

the transistor susceptible to quantum tunneling phenomena—the finite probability that

electrons will tunnel through the dielectric barrier when the transistor is supposed to block

the flow of electrons. The probability for quantum tunneling increases as the dielectric

2



barrier decreases in dimension, which causes substantial current flow leakage and increases

redundancy incorporation [130]. Thus, computational performance and clock speed no longer

scales with transistor size [43]. The future of Moore’s Law is a widely debated topic.

Quantum tunneling effects are already being observed, and MOSFETs and CMOSs will likely

soon hit a hard limit as they reach around 5 nm in length [139]. Moore’s Law may be extended

by the development of new transistor models, such as the tunnel field effect transistor, which

uses quantum tunneling by sustaining a high-energy barrier and fluctuating the current

to manipulate the probability for electrons to tunnel through the dielectric barrier [10].

However, this type of technological advancement only slightly stretches the limit to Moore’s

Law. Transistors are currently 100 atoms in diameter. Even if transistors could overcome

quantum phenomena and remain a reliable switch at these dimensions, a hard limit exists:

the size of an atom. If single-atom transistors are developed and follow the current rate of

advancement, the projected limit to Moore’s Law is still expected to be reached between 2025

and 2030 [97]. Throughout the history of computation, the technologies used to process a

logical bit of information have all reached their saturation points. Interestingly, Moore’s Law

has held true to this point for transistors because manufacturers have invested in new and

better implementations. Although the integrated circuit has advanced computation more

than any other device, it is also reaching saturation. Unconventional computing methods

have the potential to continue the trend of increased computational power over time without

the use of the transistor.

1.1.2 Thermodynamic Limits

As the size of the transistor continues to shrink, heat becomes a growing complication.

Conventional computation is irreversible, meaning that after a gate performs an operation,

the information is erased and the gate resets. The third law of thermodynamics dictates

that entropy must always increase in a system [152]. Therefore, resetting a bit releases

information in the form of heat proportional to the transistor’s ambient temperature. The

formal definition is given by Landauer’s principle, which states that “any logically irreversible

manipulation of information, such as the erasure of a bit or the merging of two computation

paths, must be accompanied by a corresponding entropy increase in noninformation-bearing

3



degrees of freedom of the information-processing apparatus or its environment” [13]. To

prevent a chip from melting, computational devices need to dissipate this heat quickly.

Supercomputers implement large cooling systems, but some thermodynamic limits affect the

effectiveness of cooling. The maximum number of bits of information that can be stored in

a system is given by

Nbits =
E

kbT ln(2)
+ log2

∑
i

e
−Ei
kbT (1.1)

where kb is the Boltzmann constant, T is the temperature of the system, and Ei is the energy

of each bit [152]. Thus, to increase the number of transistors on an integrated circuit, the

temperature must continue to decrease. Manufacturers have already seen complications with

high power density. In 2004, Intel cancelled its CPU project with 4-GHz clock frequencies

because cooling requirements became too complex and inefficient [59]. Transistors currently

operate at 1, 000 mV and the operation limit for transistors is approximately 200 mV.

Lowering the voltage to these levels would decrease the heat production to some extent

but would slow down the rate of computation [106]. Cooling apparatuses also have room for

improvement. However, heat removal has a quantum limit given by

Qremoval ≤ (
πk2bT

2)

3~
(1.2)

where h̄ is the reduced Plank’s constant ( h
2π

) [135]. Computational methods must address

these fundamental thermodynamic limits continue to increase computational power.

1.1.3 Energy Consumption Limitations

The internet has allowed people all over the world to communicate, educate, and share.

This ability has sparked the globalization of information and a boom in computational

devices. Shared information on this scale requires mass data storage. Every social media

post, web search, news article, e-book, music file, and website requires data to be processed

and stored on servers. Large collections of these servers are stored in data centers and are

often referred to as “the cloud.” The development of the cloud has increase data storage
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efficiencies tremendously. Data centers in the United States account for 42.2% of US energy

consumption, which is projected to begin increasing at an exponential rate as data centers

reach 80–90% efficiency [106].

As the transistor shrinks in size, the amount of electricity, including voltage and current,

required to power the transistor decreases. In 1974, Robert Dennard theorized that as the

number of MOSFETs on an integrated circuit doubles, the power usage remains relatively

constant [47]. This effect was dubbed “the Dennard scaling theory,” and it held true for

more than 30 years. However, in 2006, the Dennard scaling theory broke down and the

power density began increasing with transistor count, primarily because of current leakage

and an increased probability for thermal runaway—a positive feedback loop of current flow

and temperature [19].

Since 2010, computational energy consumption has increased exponentially. This increase

is the combined result of Moore’s Law, the breakdown of the Dennard scaling theory, data

storage, and the increased number of computational devices. Efficiencies are continuously

researched and implemented to slow this trend. However, efficiency can only go so far. The

Landauer limit is the maximally efficient use of irreversible computation at 3 × 10−21) J
bit

.

Per the US Energy Information Administration, the world’s net electricity production is

only projected to increase 69% by 2040 to account for population inflation [162]. To

power transistor-based computers, the world’s energy production will need to increase at

an exponential rate, which is currently unsustainable.

1.1.4 Programming Limitations

The limitations to conventional hardware and to the programs implemented on the hardware

must be considered. Whether programs can become significantly more optimized is highly

debated. The following information is based on the current understanding of conventional

computation.

Computational problems are categorized in classes according to the level of difficulty.

The difficulty is solely based on the best-known algorithms for solving these problems. It

determines the number of transistors, links of communication between transistors, amount

of time, and any other resources needed to solve the problem.
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The Turing machine is a model used to define the required resources. The model

manipulates bits that are divided into cells on an infinitely long piece of tape. The head

reads and writes the bit and the state onto a register and then moves to a cell on the left

or right depending on the set of rules in place. The Turing machine used in conventional

computing is deterministic, meaning the rules are fixed.

The Turing machine is used to determine the complexity of a problem. For a deterministic

Turing machine, the time taken to solve a problem is a function of the total number of

steps before the head halts and gives an answer [146]. Thus, a problem is solvable in

some time T if a Turing machine that can solve it exists. Problems are categorized based

on their determined complexity. Complexity classes are determined based on the type of

computational problem, the Turing machine used to solve the problem, and the resources

available (time and computational space available). In conventional computing, four primary

complexity classes exist: P (polynomial time), NP (nondeterministic polynomial time), NP-

complete, and NP-hard.

• The P class contains a set of problems that can be solved in polynomial time, which

means that forN bits of information, the amount of time taken to solve a problem scales

Nk where k is a positive integer and thus can be solved efficiently by a deterministic

Turing machine [156]. Notably, not all P-class problems are computationally fast. For

a case in which k is large, the run time would still be long. However, in general, P-class

problems are the simplest in terms of complexity. The P class contains problems such

as multiplication and finding the greatest common divisor.

• The NP class contains problems that can be solved by a nondeterministic Turing

machine in polynomial time. Thus, conventional computers cannot solve this class

of problems efficiently because time would instead scale kN . However, the problem

solution can be verified in polynomial time. The P class is contained in the NP

class because a nondeterministic Turing machine can solve P class problems efficiently.

Finding the coprime factors of some integer h is a problem that is widely believed

to be in the NP class because no known algorithm can solve it deterministically in
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polynomial time. However, the coprime factors can be checked easily with a simple

multiplication operation.

• The NP-complete class contains a set of problems to which all other NP problems can

be reduced in polynomial time. In other words, all NP problems can be written as

NP-complete problems [123].

• The NP-hard class contains problems that are NP-complete or harder. Thus, NP-

complete problems are in both the NP and NP-hard classes. NP-hard problems outside

of NP-complete can no longer be checked in polynomial time. An example of an

NP-hard problem that is not NP-complete is the halting problem, which determines

whether a program will run forever given the input [123].

These classes are formed from the current construction of algorithms. When considering

the possibilities of computation, the P class only encompasses a small area of problems.

To realize the full potential of computation, other Turing machines should be considered.

Some researchers believe that P = NP, and the algorithms that solve NP problems on a

deterministic Turing machine in polynomial time have not been discovered yet. This belief

is widely considered to not be the case, and this paper assumes that P 6= NP [60].

As these limitations become more concrete, new computing methods have garnered

research and public attention. For problems that fall outside of P class, there is interest

in unconventional forms of computation that may provide some computational resource

advantage over classical computation. This dissertation is dedicated to analyzing quantum

annealing as an unconventional method of computation for solving a real-world NP-HARD

optimization problem. In particular, this quantum annealing device is benchmarked for

probability of success and probability of errors against a brute force solver. Tuning strategies

are implemented and studied for their ability improve the performance of the quantum

annealer. These tuning controls are one part of working toward a quantum computer with

resource benefits over classical computational methods.
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1.2 Introduction to Adiabatic Quantum Computing

and Quantum Annealing

Adiabatic quantum computing (AQC) is a model of computation that uses quantum

mechanical processes operating under adiabatic conditions. As a form of universal quantum

computation, AQC employs the principles of superposition, tunneling, and entanglement

that manifest in quantum physical systems. The AQC model of quantum computing is

distinguished by the use of dynamical evolution that is slow with respect to the time and

energy scales of the underlying physical systems. This adiabatic condition enforces the

promise that the quantum computational state will remain well-defined and controllable,

thus enabling the development of new algorithmic approaches.

Several notable algorithms developed within the AQC model include methods for solving

unstructured search and combinatorial optimization problems. In an idealized setting,

the asymptotic complexity analyses of these algorithms indicate computational speed-ups

may be possible relative to state-of-the-art conventional methods. However, the presence

of non-ideal conditions, including non-adiabatic dynamics, residual thermal excitations,

and physical noise, complicate the assessment of the potential computational performance.

A relaxation of the adiabatic condition is captured in the complementary computational

heuristic of quantum annealing (QA), which accommodates physical systems operating at

finite temperature and in open environments. Although QA provides an accurate model

for the behavior of actual quantum physical systems, the possibility of non-adiabatic effects

obscures a clear separation with conventional computing complexity.

A series of technological advances in the control of quantum physical systems has

enabled experimental AQC and QA. Prominent examples include demonstrations using

superconducting electronics, which encode quantum information in the magnetic flux induced

by a very weak current operating at cryogenic temperatures. A family of devices developed

specifically for unconstrained optimization problems has been applied to solve problems

in specific domains, including logistics, finance, materials science, machine learning, and

numerical analysis. An accompanying infrastructure was also developed to support these

experimental demonstrations and enable access to a broad community of users. Although
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AQC is most commonly applied in superconducting technologies, alternative approaches

include optically trapped neutral atoms and ion trap systems.

Significant progress in the understanding of AQC has revealed several open topics that

continue to motivate research in this model of quantum computation. Foremost is the

development of methods for fault-tolerant operation that will ensure the scalability of AQC

for solving large-scale problems. Additionally, unequivocal experimental demonstrations that

differentiate the computational power of AQC and its variants from conventional computing

approaches are needed. Achieving these goals will require hardware development, algorithms

and application development, and software tool development. Hardware development

requires advances in the fabrication and control of quantum physical systems under the

adiabatic restrictions. The development of quantum algorithms for applications that are

known to be difficult or impossible for conventional computing provides the framework to

benchmark quantum devices against classical computation at each generation of quantum

processors. Quantum software tools allow researchers to interact with quantum processors

in new ways to solve quantum algorithms and inform future hardware and software

development.

The work of this dissertation uses tuning strategies available with quantum software

tools to assess the quality of solutions returned by the quantum annealer for traditionally

difficult optimization problems. The experiments apply a wide range of available tuning

strategies to assess current quantum device performance, inform future software and

hardware development, and provide a methodology for determining the optimal set of

controls for an application of interest. All experiments were performed using the D-Wave

2000Q quantum annealer with currently available controls for manipulating tuning strategies.

1.3 Benchmarking Quantum Annealing

Over the past several years, various early-stage quantum processing units (QPUs) have been

made available to researchers and institutions, which has driven interest in exploring the

use of QPUs for research and commercial applications. Many approaches exist to building
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quantum computing hardware and as the technology progresses, analyzing the performance

at each development stage is important. This analysis process accomplishes several goals by

• Establishing common benchmarks for marking progress and comparing the perfor-

mance of quantum computers with traditional and alternative computation methods

• Educating the larger scientific community on the current capabilities of quantum

computing hardware for application implementation

• Informing future algorithm and hardware innovations

These goals can be accomplished in part with efforts to benchmark the solution quality

when solving problems that are known to be difficult for classical computational methods

and when adjusting the available tuning strategies of QA hardware.

The available QA tuning strategies take advantage of preprocessing, annealing, and post-

processing controls. Preprocessing involves preparing the problem to be solved, including

formulating the Hamiltonian, applying weights to the Hamiltonian (e.g., Lagrange multi-

pliers), and embedding the problem onto the hardware. Modifying annealing parameters

involves strategies for optimizing and tuning control options such as qubit initialization,

reverse annealing, pause times, and anneal offsets. Post-processing considers manipulating

the solutions returned by the quantum annealer.

The purpose of this research is to investigate the available QA controls to develop tuning

strategies to improve performance. The benchmarks used in this dissertation measure the

quantum annealers ability to solve an optimization problem by measuring solution quality

through the probability of finding the optimal solution and the probability of non-adiabatic

dynamics ”breaking” the solution. Because the quantum computing field works from many

angles to find computational advantages to quantum annealers, tuning strategies aid in

assessing the current performance of QA machines. The findings from implementing tuning

strategies also inform future hardware and software development.
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1.4 Motivation to Study Quantum Annealing Perfor-

mance

As the field of quantum computing advances, many development approaches have the goal

of finding computational advantages from computers that use quantum mechanics. QA

is one such approach that uses the principles of AQC, namely the adiabatic theorem, to

solve problems. In many ways, QA is on the cutting edge of quantum computation. D-Wave

Systems’ quantum annealer was released in 2014 as the first commercially available quantum

computer. Although many research groups develop universal quantum computers at a small

scale to study the physics and investigate methods for scaling with error correction, D-Wave

Systems has scaled much faster. D-Wave Systems’ approach allows researchers to formulate

classically difficult problems for the quantum annealer for testing, which drives interest across

a wide variety of applications and opens opportunities to test hybrid computing strategies.

However, this approach also has drawbacks. The D-Wave Systems quantum annealers are

noisy, have no error correction, and do not use the full Hamiltonian necessary for universal

quantum computation.

An opportunity exists to address the challenges of QA by developing and investigating

tuning strategies that not only assess the performance of the quantum annealer but also

inform future hardware development and software for tuning strategies. The preprocessing

controls include all problem configurations an hardware settings prior to annealing. The

annealing controls include the annealing schedule with timing constraints. The post-

processing controls include all programs that process the output solution from the quantum

annealer.

1.5 Tuning Strategies Research Design

The research conducted for this dissertation began by first building a framework to solve

complex optimization problems with QA and then using that framework to test the

capabilities of QA hardware to solve such problems. The primary research question is

whether an optimal set of controls exists that can improve the solution quality returned
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by the quantum annealer. This work seeks to answer the following questions: If an optimal

set of controls exists, what is the methodology for finding such controls? Additionally,

what do these tuning strategies reveal about the current capabilities and shortcomings

of the QA hardware? This work also opens questions on how a problem’s structure and

complexity affect the probability of success and thus the benefit that tuning strategies may

provide. Certain energy landscapes may positively or negatively affect the performance of

the quantum annealer. This work is meant to provide a methodology for understanding the

effects of problem complexity and structure on QA performance and determining an optimal

set of controls for current applications of interest.

QA is in the early stages of development, and the limitations of this research center around

the limitations to the QA hardware and controllable software. As mentioned previously, all

experiments were performed using the D-Wave 2000Q hardware with the available Ocean

software provided by D-Wave Systems [41]. The tuning strategies implemented in this

dissertation used the currently available QPU hardware controls. The D-Wave 2000Q

hardware has available controls in all three categories of preprocessing, annealing, and post-

processing. However, theoretical controls such as local adiabatic evolution as discussed

in Sec. 1.4 have not been fully realized in practice and, if available, could experimentally

demonstrate quantum advantages for quantum algorithms over classical methods [148].

Advanced controls such as local adiabatic evolution are not currently available for QA

hardware and were therefore not an experimental part of this research. However, control

experiments were performed with the QA hardware controls available at the time of this

experimentation.

This research focuses on developing a methodology for determining the optimal set of QA

controls for combinatorial optimization problems by investigating the effect of QA controls

on the probability to find the ground truth solution. Future researchers and application

developers can use this methodology to determine whether their problem can be solved with

high solution quality on a quantum annealer and whether an optimal set of controls exists

for their application. This methodology also serves as an avenue for benchmarking the

quantum annealer as the technology improves in future generations. Chapter 2 provides

a detailed literature review covering a brief introduction to quantum computation, AQC,
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and QA; the hardware implementations that are being developed in the field; the hardware

controls that can theoretically affect AQC and QA performance; the experimental studies

on currently available QA controls; the array of applications of interest that can use AQC

and QA; and open questions in the field. Chapter 4 describes the methods by which all

experiments were performed, including the QA platform for solving quadratic unconstrained

binary optimization (QUBO) problems and the Markowitz portfolio optimization problem,

which was used as a problem of interest in the experiments. Chapter 5 shows all major

research findings organized by tuning strategy, including problem controls, preprocessing

controls, annealing controls, and post-processing controls. Chapter ?? interprets all research

findings as conclusions with suggestions for future research.
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Chapter 2

Background

2.1 Quantum Computing

Quantum computing is a form of computation that explicitly uses quantum mechanical

effects to process information; a quantum computer implements these principles to solve

computational problems. Quantum computers are distinguished by the use of the quantum

states of a physical system to store information [124]. Unlike classical bits of information

that are either 0 or 1, a quantum bit of information, or qubit, is a linear superposition of 0

and 1. Formally, qubits represent normalized vectors within a two-dimensional Hilbert space

that can be visualized as points on the Bloch sphere shown in Figure 1. In particular, the

opposing poles of the Bloch sphere correspond to the orthogonal states of a physical system

whereas every point on the surface represents a valid linear superposition [12].

In general, interactions between quantum physical systems extend the principle of

superposition across multiple qubits, and the joint quantum states prepared by these

interactions will manifest as correlations in behaviors for the physical systems. Quantum

states are said to be entangled when these composite behaviors cannot be separated into

independent processes—the behavior of one system directly depends on the behavior of the

other. Entanglement represents a fundamentally new type of correlation that cannot be

reproduced within the context of classical physical theory [72]. It is a hallmark of quantum

mechanics and, consequently, quantum computing.
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A quantum algorithm is a set of operations that prepares superposition and entanglement

and transforms a quantum state. The quantum algorithms proposed for full-scale quantum

computers are expected to provide significant speedups over best-in-class conventional

methods for certain problems. For example, quantum computers are expected to efficiently

simulate quantum mechanics, which would provide insights into the structure, properties,

and behavior of systems with many particles or interactions [58]. Additional quantum-

algorithmic results affect the development of new methods for optimization, unstructured

search, integer factorization, systems of linear equations, and many other application areas

[124] [116]. These potential performance gains continue to motivate the development of

quantum computers and applications to practical problems.

The concept of a universal quantum computer formalizes how arbitrary computations

can be performed [48] and enables a theory of quantum computational complexity [14].

Prominent classes from conventional complexity theory are found to have distinct quantum

analogs that categorize new classes of problems. More information on complexity classes is

mentioned in Sec.1.1.4. Conceptual requirements for an abstract quantum computer provide

criteria that guide experimental efforts to realize this technology and are often referred to

as “DiVincenzo criteria” [51].

Problem classes that are challenging to solve with conventional methods of computation

are of specific interest for quantum computation. In particular, the NP class represents

decision problems with solutions that can be verified in polynomial time but are not known

to be solved in polynomial time. As the size of the input problem grows, the conventional

resources required to find a solution grow super-polynomially with respect to input size.

Problems from the NP class arise in many notable applications such as cryptography [172],

routing and scheduling [100], and more. Therefore, quantum computation is of interest for

this class of problems. Adiabatic quantum computation is especially focused on optimization

problems that fall in the NP class but additionally must be decision problems. Such

problems fit naturally into AQC because their solutions can be encoded in the ground

state and translated into an Ising Hamiltonian in polynomial time [104]. Some example

NP optimization problems that have been formulated for AQC include satisfiability (SAT)

problems [71], finding cliques [32], and exact cover [36].
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Experimental efforts to realize AQC and QA have used a variety of quantum physical

systems, including the spin of individual electrons [158], the polarization of single photons [4],

and the quantized magnetic flux in superconducting electronics [49]. However, interactions

between such quantum physical systems and the environment may generate entangled or

correlated states that represent a loss of information to the uncontrolled surroundings. The

coherence time quantifies the timescale over which information may reliably persist in the

primary system, which sets a fundamental limit on how many operations can be performed.

The development of well-characterized, reproducible qubits continues to be an active area

of experimental research for the realization of noisy, intermediate-scale quantum computing

devices [140].

A quantum computing model defines how a quantum computer should operate. Several

models have been developed to implement universal quantum computation, each being

computationally equivalent but operationally distinct. The model of AQC is described in

detail in the following section, and a summary of the prominent circuit model can be found

elsewhere [124]. The choice of quantum computing model may be tailored to the intended

purpose of a quantum computer as some models more efficiently express certain algorithms.

Additionally, limits on the controllability of a quantum physical system may also make

certain computational models better suited.

2.2 Adiabatic Quantum Computing

AQC is a model of computation that uses quantum-mechanical processes operating under

adiabatic conditions. This model employs continuous-time evolution of a quantum state ψ(t)

from a well-defined initial value to compute a final observed value. The evolution is modeled

by the Schrödinger equation

i~
∂ψ(t)

∂t
= H(t)ψ(t) (2.1)

operating in the presence of adiabatic changes to the governing Hamiltonian H(t) over the

range t ∈ [0, T ], where ~ is Planck’s constant divided by 2π. AQC is computationally

equivalent to all other quantum computing models, including the circuit and topological

models, and it can efficiently solve any problem in bounded-error quantum polynomial time
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(BQP) [5]. However, AQC was originally proposed as a method for solving SAT problems

[57] and it has received attention for the simplicity by which combinatorial optimization

problems can be cast in Hamiltonian forms [104].

The principles of operation for AQC derive fundamentally from the adiabatic theorem,

which states that a quantum mechanical system will remain in an instantaneous eigenstate

of the Hamiltonian provided conditions on the internal energy and timescales are met [23].

In the simplest case, the adiabatic theorem requires:

1. An energy gap between the populated eigenstate and all other excited energy states

2. Sufficiently slow evolution time to suppress internal excitation

The significance of these conditions may be illustrated through the example of a time-

dependent Hamiltonian:

H(t) = A(s(t))HA +B(s(t))HB, (2.2)

where s(t) is the control schedule, A(s(t)) and B(s(t)) are the time-dependent amplitudes

which control the interpolation of the initial and final Hamiltonians, and HA and HB

represent self-adjoint linear operators acting over a Hilbert space of dimension N = 2n,

with the integer n referring to the number of qubits. In particular, the schedules should be

smooth and differentiable and should satisfy the boundary conditions A(0) = 1 and B(0) = 0

while A(s = 1) = 0 and B(s = 1) = 1. The j-th instantaneous eigenstate φj(t) for H(t) is

then defined as

H(t)φj(t) = Ej(t)φj(t), (2.3)

where {Ej(t) : j = 0 to N − 1} is the instantaneous eigenspectrum of H(t). If the quantum

state is prepared in the j-th energy eigenstate of H(0) = HA at time t = 0, it will remain

in the j-th instantaneous eigenstate under Schrödinger evolution provided the adiabatic

conditions are met. The adiabatic theorem promises that the quantum state at time T will

then be the corresponding j-th energy eigenstate of H(T ) = HB. The transformation from

a known initial state to a final, potentially unknown state represents adiabatic quantum

computation.
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In practice, the instantaneous ground state of H(t) is typically chosen for the computa-

tion, and the initial Hamiltonian H(0) is selected to have a ground state that can be prepared

directly. The energy spectrum gap between the quantum computational state and all other

states must remain nonzero to ensure adiabatic evolution. Assuming the computational state

is the ground state, the minimum spectral gap of H(t) is defined as

gmin = min
0≤t≤T

min
j 6=0

[Ej(t)− E0(t)], (2.4)

where Ej(t) is any higher-lying energy state. The minimum spectral gap gmin sets a lower

bound for the smallest internal energy scale that contributes to undesired coupling of the

computational ground state to erroneous, higher-lying eigenstates. These transitions arise

from diabatic quantum dynamics, with the most common example typified by Landau-Zener

transitions [176]. When the Hamiltonian changes quickly, a non-negligible probability exists

for diabatic transitions that corrupt the computation. These transitions may be avoided by

selecting the evolution time T to be much longer than the timescale set by the inverse of the

spectral gap. Worst-case lower bounds for general Hamiltonian instances suggest T must

scale as O(g−3min) [75], whereas more restrictive settings can improve this to O(g−2min) [55].

A central concern for assessing the computational efficiency of AQC is determining how

the adiabatic timescale T must grow as the size n increases. Generally, the spectral gap gmin

will decrease as n increases, but the rate of this decrease greatly affects the time complexity

of the computation. For example, assuming gmin ∝ kn for some positive constant k, the

minimum time T needed to ensure the adiabatic condition would increase exponentially

with problem size. This increase would indicate that an exponential increase in time is

required to solve a general problem within the AQC model. Presently, theoretical estimates

for how the minimum spectral gap scales with size are inconclusive for the general setting

but may be developed for specific Hamiltonian models (see examples from Albash et al.

[8]). Answering the general spectral gap question appears to be computationally difficult, if

not impossible [40]. Additionally, the choice of temporal interpolation strongly affects the

instantaneous spectrum. Some specific instances of Hamiltonians have been found to support

18



minimum computational times that are sub-exponential in n, provided a more general form

of the temporal interpolation is employed [148].

As noted previously, the initial Hamiltonian H(0) should enable convenient preparation

of the quantum state from which the computation begins. A frequently used Hamiltonian is

the form

HA = −
n∑
i

x̂i, (2.5)

where each term x̂i represents the n-fold tensor product of n − 1 identity operators I and

the Pauli operator x̂ for the i-th qubit. The energy eigenstates and eigenvalues for this

Hamiltonian can be analytically constructed, and experimental methods for preparing those

eigenstates have been developed [57].

The final Hamiltonian H(T ) encodes the problem to be solved by AQC as the

prepared quantum state expresses the corresponding solution. The Hamiltonian complexity

determines the types of problems that can be solved. For example, a Hamiltonian capable

of expressing a sum of arbitrary 2-local interactions is Quantum Merlin Arthur (QMA)-

complete, whereas solving the problem of a 2-local Ising Hamiltonian is NP-complete [89]

[24]. In particular, the latter Ising model provides a direct connection to a variety of

computationally significant problems. Although the Ising model was originally developed

to describe the physical pairwise interactions between the spins in a magnetic material,

it has since been used to describe many other systems composed from interacting binary

variables. A quantum mechanical version of the Ising Hamiltonian may be cast in the form

H = −
∑
i,j

Jij ẑiẑj −
∑
j

hj ẑj + γ, (2.6)

where hi represents a bias on qubit i, ẑ is the z Pauli operator, γ is a constant, and Jij

describes the coupling strength between qubits i and j. This formulation can be used to

model a wide variety of combinatorial optimization problems [104] in which they are reduced

to finding the ground state of an appropriate Hamiltonian. Section 2.6.1 provides additional

examples, but the type of Hamiltonian plays a prominent role in the problem complexity.
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2.3 Quantum Annealing

Efforts to realize AQC using quantum physical systems are susceptible to nonideal conditions

that undermine the promise of the adiabatic theorem, which presents a fundamental challenge

in the control of quantum physical systems. A relaxation of the adiabatic condition is

captured in the complementary computational heuristic of QA, which accommodates physical

systems operating at finite temperature and in open environments. QA is a method for

identifying the minimum of an objective function using an approach that is based on

the principles of AQC but fails to meet its stringent requirements. Additional dynamical

behaviors, including stochastic dynamics, may be present during the actual evolution of the

quantum state [82], which revokes the guarantee of remaining in the instantaneous eigenstate,

though it may be sufficiently close in practice.

In practice, QA evolves a quantum state under the time-dependent Hamiltonian in

Eq. (3.2). However, the dynamics may not be modeled as a Schrödinger evolution. When the

dynamics are insufficiently slow, the quantum state will mix with nearby energy eigenstates

and the probability to observe the expected outcomes will decrease. Additionally, the nonzero

temperature of operation for QA invalidates the pure state description. A statistical mixture

of energy eigenstates is a more appropriate model for initialization of the computation. The

mixture of the initial state depends on the local operating temperature as well as the energy

splitting between levels used for the computational basis.

Analyzing the results from QA requires statistical sampling to build confidence in the

observed outcome. The collected results may then be used in decision-making processes.

For example, when the lowest energy eigenstate is the solution, higher energy states can be

rejected. However, this sampling comes with a cost of computational resources proportional

to the number rejected. Additionally, QA lacks a guarantee that the sought-after solution will

be included in the observed results. If the dynamics nearly satisfy the adiabatic condition,

the probability distribution should be concentrated at energies near the sought-after state.

Similar behaviors in performance are observed with several important methods of classical

computation such as simulated (thermal) annealing (SA). In SA, the system state overcomes

these energy barriers through random changes driven by temperature fluctuations [68].
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However, a probability exists for the system to get trapped in a local minimum if the

temperature fluctuations are not sufficient to cross a high energy barrier. In SA, the energy

landscape in static and thermal excitations drive dynamics as seen in Figure 2. Conversely,

QA changes the energy landscape to drive the system state toward the energetic minimum.

QA can also exploit quantum tunneling through barriers.

Although QA more closely models the behavior of quantum physical systems, the

possibility of nonadiabatic effects obscures a clear separation with conventional computing

complexity. The use of quasi-adiabatic evolution of mixed quantum states in an open envi-

ronment is typically characterized as a heuristic because it lacks many of the computational

promises offered by AQC. This characterization has led to empirical evaluations of the efficacy

of QA for solving both real and synthetic problems with mixed results [88, 168, 93, 21, 45].

In particular, how to best categorize the computational power of QA even under relatively

well-understood Hamiltonians remains unclear. For example, a stoquastic Hamiltonian is

defined to have only real, nonpositive off-diagonal matrix elements in the standard basis

representation [24]. This restricted form captures the quantum transverse Ising Hamiltonian

that underlies current experimental approaches to QA. Theoretical evidence indicates that

stoquastic Hamiltonians are insufficient for universal AQC when restricted to the ground

state, but permitting excited-state evolution is found to remove this limitation [81]. By

contrast, non-stoquastic Hamiltonians are found to be more expressive for universal quantum

computing, but the size of the minimum energy gap for these Hamiltonian remains unclear

in general [8]. Solving non-stoquastic Hamiltonians efficiently may be an important step

toward universal AQC and enhancing solution quality using QA [125].

2.4 Quantum Annealing Hardware

Designing quantum computing hardware to implement either AQC or the QA heuristic

requires time-dependent control of the Hamiltonian governing an array of quantum physical

systems [67]. For computation, the hardware must also encode a relevant problem into

the time-dependent Hamiltonian by programming interactions between the physical qubits

and measuring the final prepared quantum state. The leading technology to demonstrate
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AQC is currently superconducting electronics, but other systems have been proposed for

similar purposes (e.g., trapped ions [177]). A leading implementation of the QA heuristic

is found in the recent family of processors produced by D-Wave Systems, which are based

on a superconducting flux-qubit design [25]. A wide variety of qubit designs are possible,

with many specific choices of superconducting electronics being developed to support the

encoding of a two-level system through the use of Josephson junctions [170]. A Josephson

junction is a nanoscale insulating layer on the superconducting loop and is a leading design

choice for AQC/QA implementations [79]. Although electrons move freely on the surface of a

superconductor with no resistance, electrons probabilistically tunnel through the Josephson

junction to form a superposition of states and thus a two-level system. A flux qubit is an

example that prepares a quantized magnetic flux [80] in a superposition of states using a

Josephson junction as shown in Figure 3. Although in a superposition of states, external

magnetic fields can be applied to change the potential energy landscape or “weight” of each

qubit according to the adiabatic theorem. The qubits are also arranged in such a way that

the magnetic field of each qubit directly depends on its surrounding qubits via magnetic

interference. This magnetic coupling is analogous to entanglement and is mathematically

identical for the purpose of quantum computation. After the evolution is complete (at final

time T ), superconducting quantum-interference devices, which are inductively coupled to

each qubit, detect and read out the magnetic field/state of each qubit [74].

A key challenge in building a scalable AQC/QA device using superconducting electronics

is maximizing the connectivity of the physical elements. An ideal design would enable all-

to-all connectivity among the physical elements that represent the qubits as this ensures

the most direct form of interactions for encoding an arbitrary problem Hamiltonian.

However, the two-dimensional plane in which superconducting circuit technology is typically

fabricated imposes a physical restriction on the degree of connectivity that can be fabricated.

Consequently, trade-offs in the physical design are required. Such limited connectivity may

still enable encoding of an arbitrary Hamiltonian but at the expense of redundant encoding

of logical variables as chains of (perfectly) correlated spins. The challenge of mapping this

smaller, more densely connected graph into the limited connectivity of available hardware is

known as minor embedding [34], and a wide variety of techniques have been developed for
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this preprocessing step [95, 166, 62]. The Chimera graph topology is used for all research in

this dissertation and can be seen in Figure ??.

A second key challenge for hardware implementations of AQC/QA is minimizing the noise

arising from the environment and the applied control signals. In particular, design choices

for superconducting electronics can enable certain features of the physical system to be more

or less resilient to noise in the electrical control signals used [65]. For the flux-qubits that

feature prominently in AQC/QA implementations, a known sensitivity to flux noise arises

from magnetic-field fluctuations within the electronic circuits, which may be due to direct

noise in the applied electrical fields or induced noise in nearby conductors [144]. In either

case, the precision with which the time-dependent evolution may be controlled is limited by

such noise.

2.5 Quantum Annealing Controls

The control of AQC/QA hardware requires tuning the time-dependent Hamiltonian by

which the physical system evolves. Methods for adjusting and tuning the initial and final

Hamiltonian parameters as well as the interpolating time-dependent schedule are necessary

to drive the dynamics of problem-specific quantum states. These controls may be used

to improve the performance of AQC or QA programs by adjusting the interpolation to

either better approximate adiabatic evolution or refine the problem definition. Several

approaches exist, including varying the rate at which the energy landscape evolves, tuning

the parameters or weights in the formulation of the Hamiltonian [34, 141], and adjusting the

initial Hamiltonian. These controls determine the dynamics and can affect the quality of the

solution as well as time to solution.

2.5.1 Theoretical AQC Controls

As described by the adiabatic theorem in Sec. 2, the time T needed to ensure adiabatic

evolution of the problem Hamiltonian is inversely proportional to the minimum energy gap

gmin. Therefore, the shortest possible total T is dictated by gmin, based on the assumption

that the rate of evolution remains constant in time [57]. However, the total time T of a
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quantum computation via adiabatic evolution can be improved by applying the adiabatic

condition locally to infinitesimal time intervals dt for H(t). As shown in Figure 4, the

spectral gap changes over time and may only reach its minimum value in a very small region

of the dynamics. Therefore, a more optimal schedule would account for the local spectral

gap by increasing the rate of evolution when the energy gap widens and decreasing the rate

of evolution when the energy gap narrows, as shown in Figure 5.

The advantages of local adiabatic evolution have been applied to an example of Grover’s

search algorithm, which returns a sought-after value encoded into a target Hamiltonian [148].

Traditionally, this search problem takes on average N/2 queries, where N is the number of

entries in the database. Grover’s algorithm for the circuit model of quantum computing was

shown previously to obtain a quadratic speedup relative to the best classical method [124].

Roland and Cerf extended this analysis to AQC by showing that a similar
√
N speedup is

possible when using local control of the schedule and an evolution time [148]

T =
π

2ε

√
N (2.7)

for recovery error ε� 1.

To implement this sort of scheduling, some understanding is needed on how the energy

landscape fluctuates in time, namely, how the energy gap g changes. Therefore, gmin must

be approximated for each time slice dt. Knowing gmin for dt requires knowing the ground

state and first excited state for all H(dt). However, some potentially powerful tricks could

approximate an evolution schedule prior to solving a problem. For instance, similarities may

exist among problems that fall into various categories. Preprocessing methods could be used

to sweep over parameters to find optimal controls, or sampling the energy landscape could

reveal an optimal annealing schedule for a category of problems. Additionally, key features

of a problem may be used to approximate an annealing schedule through machine-learning

methods.

Another mechanism for improving total anneal time is to control the initial Hamiltonian.

This mechanism was first suggested by Farhi et al. when they chose the initial Hamiltonian

(HA) for a set of 3-SAT optimization problems (SAT problem limited to a maximum of three
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literals) known to have a very small gmin in the standard AQC model [56].

HA =
1

2

n∑
i=1

ci(1−Xi), (2.8)

where ci is chosen to be 1/2 or 3/2 randomly and with equal probability. With this method,

the energy landscape is modified such that a high probability exists to remove the narrow

energy gap and get a larger gmin if the problem instance is solved many times with different

randomly selected HA [56]. This method is attractive because problems can be solved quickly

and globally without prior knowledge of the energy landscape. However, knowing how many

different HA to use for a particular problem instance to ensure that a solution close to the

ground state is discovered can be difficult.

Another strategy is to formulate the initial Hamiltonian such that its ground state is

the best guess for the ground state of the problem Hamiltonian [137]. If after running the

problem some number of times, a lower energy state (enew) is discovered, enew is set as the

new ground state of HA, and the process is repeated. This process can be very useful for

problems in which some prior intuition exists for what the answer might be; it is often

referred to as the “warm-start approach.”

2.5.2 Experimental QA Controls

In practice, nonideal behaviors arise in practical implementations of QA. Section 3.1.1

represents QA under ideal adiabatic conditions that are difficult to realize in actual quantum

devices. Real-world quantum annealers have limits in the ability to control the Hamiltonian

and quantum dynamics [133]. Additionally, the presence of ill-characterized environmental

couplings give rise to flux noise [110]. The imperfect setting of the Hamiltonian parameters

(h, Ji,j) by the analog control circuits gives rise to a small intrinsic control error [92]. These

errors undermine the accuracy of the physical hardware [167, 133]. Finally, annealing too

quickly may violate the essential adiabatic conditions [57], whereas annealing too slowly

may lead to undesired thermal excitations of the quantum state due nonzero temperature

fluctuations [126]. This multitude of effects complicates the description of QA and the

assessment of its performance.
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Given the implicit dependence on several competing factors, a variety of strategies have

emerged for controlling QA to maximize probability of success in recovering the ground

state, increasing the time to solution, and minimizing errors in the quantum computational

solution. These control strategies include efficiently mapping the problem Hamiltonian

onto the physical hardware Hamiltonian, tuning annealing schedule, applying variable

transformations to mitigate control biases, and using reverse annealing to refine initial

solutions [92, 174].

Various QA controls are currently available to employ tuning strategies. The preprocess-

ing controls are defined by any parameters that prepare the logical problem and the physical

hardware prior to annealing and include the embedding algorithm, chain strength cs, and

number of spin reversal transforms (gauge transformations) g [92]. The annealing controls

are the parameters which dictate the path of the annealing schedule and include the optimal

anneal forward annealing time T and the reverse annealing control schedule parameters such

as the initial state ei, pause time tp, the point in the schedule that is annealed back to s, and

the ramp tr and quench times tq. The post-processing controls are the parameters which

process the state returned by the quantum annealer as it is converted into the logical state

that solves the problem of interest. This can also include a classical local search that uses the

quantum state as the initial state of the search to build a hybrid quantum-classical solver. In

this section, these control will be further defined and demonstrated through review of prior

literature.

Embedding Algorithms

QA hardware currently has limited coupling between qubits, which poses an obstacle for

solving complex problems with many interactions. Minor embedding algorithms navigate

this issue by mapping each logical spin of a problem to multiple physical qubits to increase

the effective connectivity between qubits, but this method can be resource intensive because

the higher the required connectivity, the larger the problem size n [35, 167]. The Hamiltonian

encoding the computational problem must be mapped into the physical hardware and satisfy

the constraints of limited connectivity. The D-Wave 2000Q hardware supports a sparse

Chimera graph as visualized in Figure ?? with 400 unit cells in which physical qubits are
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not fully connected but instead have a maximum connectivity of six couplers. The available

D-Wave 2000Q computers that were accessed remotely for this research was the 2000Q 2

and 2000Q 5 both of which have some known hardware imperfections where a number of

physical qubits with these imperfections were not used. The embedding algorithms used in

this research avoided regions with these imperfections.A fully connected graph, such as in

Figure 7, must be strategically embedded onto the more sparse Chimera graph. A single

spin from the input Hamiltonian may be realized in hardware using multiple physical qubits

that form a strongly interacting representative chain of spins. By judiciously choosing these

chains and their interactions, the original input Hamiltonian may be constructed. This

process, known as embedding, depends on the input problem as well as the target hardware

connectivity. In general, embedding is NP-hard for arbitrary input graphs [35], and upper

limits exist on the maximum graph that can be embedded [94]. For example, the largest fully

connected problem that can be embedded onto the D-Wave 2000Q has ∼60 spins, whereas

the limit in practice depends on the number of faulty/inactive physical qubits in the device.

Embedding algorithms that optimize chain length may greatly reduce the number of

physical qubits required by considering problem symmetry as well as the location of faults

in the hardware. Here, two embedding algorithms widely used in programming the D-Wave

2000Q are highlighted. The first method by Cai, Macready, and Roy is based on randomized

placement and search for the weighted shortest path between spin chains [27]. This method,

denoted as CMR, applies to arbitrary input graphs but typically creates a distribution of

chain lengths. By contrast, a second method by Boothby, King, and Roy based on a clique

embedding typically generates shorter and uniform chain lengths of size

lc =
n

4
+ 1 (2.9)

for n logical spins [22]. Clique embedding was developed with fully connected graphs in mind

to keep chain lengths small, and graphs with shorter chains can lead to better tunneling

dynamics and a lower probability of errors in the chain caused by noise [175, 166, 22].
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Chain Weight

Previously, Choi has demonstrated that minor embedding can be used to extend the

connectivity of quantum annealing hardware [34, 37]. While the logical Hamiltionian is

comprised of a set of vertices Vl with hi qubit weights and edges El with Ji,j coupler weights,

the physical embedded graph is comprised of a new set of vertices Vp and edges Ep. In this

way, the logical problem is embedded with the graph Gl = [Vl, El] → Gp = [Vp, Ep] such

that each ith vertex in Vl is embedded as a set of vertices in a chain (subgraph) Ti [151, 37].

In this process, a logical qubit is embedded onto the hardware as a chain of physical qubits

such that the number of possible logical qubit couplings are extended. The new Hamiltonian

is given by

H∗ = −
∑
l∈V ∗

h∗l σ
z
l −

∑
(l,m)∈E∗

J∗l,mσ
z
l σ

z
m (2.10)

where G∗ = [V ∗, E∗] is the hardware graph including the logical graph and physical

embedding subgraphs. The new physical Ising coefficients are given by

h∗l =
hi
|Ti|

(2.11)

for all l ∈ VTi and

J∗l,m =


Ji,j

edges(Ti,Tj)
, for l ∈ Ti,m ∈ Tj, and i 6= j

k, for l ∈ Ti,m ∈ Tj, and i = j

0, otherwise

(2.12)

where k is the intra-chain strength for Ti and chosen to keep the intra-chain qubits highly

correlated relative to the inter-chain coupler strengths Ji,j. A method for embedding

developed by Boothby, King, and Roy based on a clique embedding typically generates

shorter (relative to a random embedding) and uniform chain lengths of size

lc =
n

4
+ 1 (2.13)
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for n logical qubits [22]. Theory suggests that shorter chain lengths lead to a lower probability

of errors caused by noise[175, 166, 22]. Ensuring an embedded chain of qubits collectively

represents a single logical variable requires an intra-chain coupling (chain weight k) that is

larger in magnitude than the inter-chain couplings. In other words, the chain of physical

qubits must be strongly coupled to remain a single logical qubit. However, chains can become

“broken” in so far as individual physical qubits within the chain differ in their final state.

In general, chain breaks arise from nonadiabatic dynamics that lead to local excitation

out of the lowest energy state with theory suggesting that longer chain more susceptible to

these effects [92, 54]. King et al. observed that the chains break with higher probability

when k is too weak, but the errors from noise on the hardware can be amplified if the chains

are weighted too strongly, which can decrease the overall probability of finding the ground

state [92]. Venturelli et al. found that the solution quality from solving fully connected

graphs on the D-Wave 2 improved when sweeping over k to minimize the number of ground

states returned with broken chains [166]. Hamerly et al.’s experiments with the D-Wave

2000Q revealed observations of increased probability to find the ground state (up to 4

orders of magnitude increase) from increasing chain strength such that the probability of

chains breaking reduced to the order of 10−1 [64]. This research on the impact of k on

QA performance shows that chain strength plays an important role in the quality of results

returned from the quantum annealer. Namely, the chains strength must be large enough

that the chain continues to represent the logical qubit throughout the anneal, but an optimal

range may exist at which a k too strong will again decrease the probability of success due

to over-powering the inter-chain couplings [147]. The sweet spot for k likely depends on the

inherent noise of the hardware, but how much the optimal value of k depends on problem

structure is unknown because the majority of experiments use fully connected graphs.

Number of Spin Reversal Transforms

Interactions between embedded chains arise from the required coupling between the logical

spins. However, imperfections in the control of these spins lead to small biases that can

become non-negligible for larger qubit chains and contribute to the complex dynamics

describing the device. In turn, the probability for finding the expected ground state solution

29



could decrease because of these bias errors. The influence of these errors on the computational

result may be mitigated by using spin reversal transforms to average out biases. As a gauge

transformation, spin reversal redefines the Hamiltonian by replacing the biases and couplings

for a subset of spins with their negated value [92, 134]. This transformation maintains the

ground state of the logical problem. However, this transformation flips the sign of randomly

selected qubits so that on average, their bias is reduced. This strategy mitigates errors on

individual spins by balancing the noise on the device prior to annealing [141]. The native

D-Wave spin reversal algorithm selects a random set of embedded physical qubits to reverse

for a specified number of transformations (g), which parameterizes the control technique.

Early work demonstrated that adding g = 8 for the D-Wave 1 device and g = 16 for the

D-Wave 2 device improved results [20, 149]. King et al. demonstrated that spin reversal

transforms improved results when g = 10 for a variety of random optimization problems, and

they observed that spin reversal had a more significant improvement on the results when

solving the more difficult 3-SAT problems compared with random instances where Ji,j is

a random nonzero integer and hi = 0 [92]. In 2019, Pelofske et al. developed a genetic

algorithm that optimized which particular set of physical qubits should be reversed for a

given problem; although they observed improvements from using the genetic algorithm, the

D-Wave 2000Q’s native spin reversal algorithm was highly optimized [134]. These results

suggest that spin reversal can improve the results returned from the quantum annealer by

mitigating some inherent device noise, and this improvement may be noticeably greater for

more noisy devices and for problems with a more complex embedding.

Total Annealing Time

As shown in Sec. 2.2, the adiabatic theorem dictates that T must be slow enough such that

the system does not jump to an excited state. The optimal T is proportional to the inverse

of the minimum energy gap, which is problem dependent and difficult to identify. However,

in practice, QA has thermal noise and long anneal times decrease the probability for the

system to remain in the ground state [142, 7]. Early experiments in QA found that even for

the smallest allowable annealing time of T = 5 µs for the D-Wave 1 with ∼100 qubits and

T = 20 µs for the D-Wave 2 with ∼500 qubits, T was suboptimally slow for the problems
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tested due to device noise [20, 149]. However, King et al. observed that the D-Wave 2 device

showed optimal times above T = 20 µs for some problem classes [92]. In 2018, Albash et al.

investigated optimal T for the D-Wave 2X device (∼1,000 qubits) and the state-of-the-art

D-Wave 2000Q device (∼2,000 qubits) with a class of “logical planted” problems, which

used the majority of physical qubits on the devices and are designed to be theoretically ideal

for QA by forming tunneling energy barriers in the energy landscape. This study found

that although the optimal anneal time for many problems was shorter than the minimum

available T = 5 µs on the D-Wave 2X device, the optimal T for the problems solved on the

D-Wave 2000Q were over 50 µs [9]. These studies suggest that finding an optimal annealing

time depends on the inherent noise of the device and the problem class.

Reverse Annealing Controls

Another method of QA is reverse annealing, in which the system starts in a initial state ei and

evolves in the reverse direction back to some point in the anneal sp with the option of pausing

for some time tp before annealing back in the forward direction to s = 1. This technique

was first proposed in 2011 by Perdomo et al. so that instead of starting an anneal from a

superposition of all possible states, one could start an anneal from a good guess ei [137].

The differences in the control schedules of forward and reverse annealing are demonstrated

in Figure 6, where a linear reverse annealing schedule is compared with a linear forward

annealing schedule using the amplitudes A(s) = (1 − s) and B(s) = s. Notably, forward

annealing controls increase monotonically with time, whereas reverse annealing controls

include a change in the direction of the control schedule where the ramp time from s = 1

to sp is tr = t1, the time paused at sp is tp, and the quench time back from sp to s = 1 is

tq = T ′− t2. Thus, the reverse annealing controls that can be tuned include ei, s, tp, tr, and

tq.

In 2017, Chancellor et al. suggested that enabling quantum annealers to start from an a

state ei was crucial for hybrid classical-quantum algorithms in which the quantum annealer

can start from the results found from a classical algorithm [30]. D-Wave also released a

white paper in which the authors found an example of reverse annealing that was up to

150 times faster at finding the ground state than forward annealing; they also observed an
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optimal range of s between .7 and .8 in which the system could tunnel to a lower energy state

with high probability, but the information provided to the system with ei was still preserved

[171]. Reverse annealing was implemented on the D-Wave 2000Q processor in 2018 by King

et al.; they observed topological phenomena by reverse annealing a set of 50 samples in

which each sample used the final state of the previous sample as the new ei [91]. Ohkuwa et

al. studied reverse annealing analytically to solve the fully connected ferromagnetic p-spin

model and observed that if ei was close to the ground state, reverse annealing improved upon

forward annealing [127]. Marshall et al. conducted experiments with reverse annealing for

problems whose energy landscapes were known to see if reverse annealing with a pause at an

sp near the minimum energy gap improved the probability of tunneling to the ground state.

They observed that the probability of finding the ground state increased by over an order of

magnitude if system was paused for some tp just after the minimum energy gap [108]. Most

recently, Venturelli et al. used reverse annealing combined with a classical genetic algorithm

as a hybrid heuristic for solving portfolio optimization problems. The portfolio optimization

problems were first fed into a genetic algorithm to retrieve a local minimum that was then

used as the ei for reverse annealing. This hybrid heuristic was observed to be more than 100

times faster at finding the global minimum than forward annealing [165]. These studies show

that reverse annealing provides improvements in time to solution over forward annealing for

certain problem formulations and offers greater flexibility for hybrid computation.

Post-Processing Error Correction

An additional control is required for decoding embedded chains to recover the computed

logical spin state. Ideally, all chains remain uniform through the anneal, but noise and

nonoptimal k can cause chains to break. In the absence of chain breaks, the logical value

is inferred directly from the unanimous selection of a single spin state by every physical

qubit. In the presence of chain breaks, several strategies may be employed to decide the

logical value, including majority vote, discard, and a greedy descent [41, 92]. Majority vote

selects the logical spin value as the value that occurs with the highest frequency in a chain.

Discard ignores any solutions with broken chains. Greedy descent is a hybrid computing

technique that takes the solution with broken chain returned by the D-Wave and feeds it
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into a classical gradient descent algorithm to locally search for the solution. This greedy

descent flips random bits in the broken chains of the solution to find the lowest energy. As

mentioned in Sec. 2.5.2, reverse annealing can also be used as a post-processing technique for

forward annealing. King et al. found small improvements in time to solution by implementing

majority vote and an order-of-magnitude difference when implementing the greedy descent

method [92]. In summary, post-processing can be used to interpret results from broken

chains. Some of these methods such as discard and majority vote simply attempt to clean

up random errors for benchmarking results. However, reverse annealing and greedy descent

can be used to apply a local search around the embedded solution returned by the quantum

annealer.

2.6 Quantum Annealing Applications

Several applications have been developed within the AQC model to take advantage of its

explicit representation of optimization [115]. Suitable combinatorial optimization may be

found in diverse areas, including unconstrained and constrained optimization [69, 153, 50, 16],

number theory and graph theory [17, 163, 31, 78], and machine learning [122, 53, 119,

2]. Extension of these ideas to specific application problems has also received significant

attention [120, 136, 166, 39, 150, 84, 113].

A second area of AQC applications is data analytics, and in particular, several

applications have been developed to leverage QA to investigate probability distributions.

Sampling from the prepared distribution provides a convenient method for calculating

expectation values and other statistics. This data analytics technique forms the basis of

many machine-learning methods [3, 46, 155, 119, 138].

A third emerging application area is the simulation of quantum Hamiltonian models,

which is an important study focus for the physical sciences (e.g., in high-energy physics,

chemistry, materials science, and biology). These applications sample the quantum state

prepared by a model adiabatic process to estimate the physical features of quantum-

mechanical systems [66, 90, 173].
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2.6.1 Combinatorial Optimization

Optimization problems seek the best solution within a set of many candidates. They are

often difficult to solve because the solution may not be obvious or it may not be easy

to quickly search the candidates. Solvers for optimization problems have found a natural

implementation within the AQC model that can be designed to follow evolution of the

lowest energy state of a model Hamiltonian. By designing the model Hamiltonian to mimic

an optimization problem, the preparation of a final quantum state can represent the solution

to the original optimization problem. Moreover, AQC offers the promise that the solution is

optimal when the adiabatic condition is met throughout the computation. The QA heuristic

may also be used for optimization, but it does not guarantee that the optimal solution will

be found.

The choice of the target Hamiltonian determines the type of optimization problems that

can be solved using either AQC or QA. For example, currently available QA hardware relies

on a target Hamiltonian that models an Ising Hamiltonian, as described in Eq. 2.10. A wide

variety of problems have been reduced to the Ising form [104, 44]. The Ising Hamiltonian

itself is naturally related to QUBO. The QUBO problem is formulated to find the minimum

of a quadratic polynomial with binary variables, meaning

E(x) =
n∑
i=1

cixi +
n∑
i=1

n∑
j=1

Qi,jxixj, (2.14)

where x ∈ {0, 1}, ci represents the linear term to be minimized, and Qij describes the

quadratic interactions or correlations between variables. The conversion from QUBO to

Ising form is performed by using the transformation of variable x ∈ {0, 1} to spin s ∈

{−1, 1}. The classical spin variable can then be substituted by the corresponding quantum

operator to achieve a quantum Ising Hamiltonian as defined by Eq. 2.6. A variety of different

combinatorial optimization problems have been reduced to this form [104]. Several examples

are described below.

3-SAT. A SAT problem determines whether an assignment for Boolean variables that

satisfies a set of logical clauses exists. Such a problem arises in many practical applications,

including product model checking and verification, planning and protocols, structural design,
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and others [18]. The well-known Cook-Levin theorem from computational complexity theory

places the 3-SAT problem in the NP-complete complexity class [38] [101], where this variant

is specialized to cases for which every clause has, at most, three variables. Moreover, 3-SAT

provides a constructive means by which a variety of other problems can be shown to lie in

the NP hierarchy [86]. This hierarchy includes the Ising problem introduced above, which

was identified by Farhi et al. as an important step in solving 3-SAT within AQC.

When introducing AQC as a method for solving optimization problems, Farhi showed

how AQC could be used to solve 3-SAT using a 3-local Hamiltonian:

Hp =
n∑
i

Hi, (2.15)

where Hi is a k-local Hamiltonian corresponding to the i-th clause [57]. If the smallest

eigenvalue of Hp is 0, each clause of the problem is satisfiable. [8].

Binary Integer Linear Programming (BILP). BILP is an NP-hard problem that

maximizes or minimizes an objective function subject to a series of constraints. Practical

examples include portfolio optimization [165] [150], scheduling, networking [121], and more.

max
x

∑
i

aixi

such that
∑
i

bixi = c,
(2.16)

where ai and bi are variables, c is a hard constraint, and xi ∈ {0, 1}. To solve this

problem with AQC, it must transform into an unconstrained problem. The Ising Hamiltonian

representation is given by

H = θ1
∑
i

xiaiixi − θ2(
∑
i

xibixi − c)2,
(2.17)

where the hard constraint around c becomes an unconstrained penalty for any deviation

around c, and θ1 and θ2 are weights that balance the first and second terms of Eq. 2.17

during the maximization of the a parameters.
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Graph Theory. Graphs are used to represent networks in which each node is an object

and the lines connecting each node represent the relationships between objects. Graph

theory can be used to solve many NP-hard optimization problems such as set cover [86],

graph partitioning [61], graph coloring [77], and the NP-complete traveling-salesman problem

[99]. The traveling-salesman problem, for instance, aims to find the shortest route that hits

all desired destinations. These problems have been mapped successfully to QA hardware

[104, 160, 111, 28].

2.6.2 Machine Learning

Machine learning using AQC- and QA-based methods has attracted significant interest for a

number of applications. Broadly, machine learning infers correlations from data and several

different approaches have been developed for this purpose within the AQC model. These

approaches include both supervised and unsupervised training methods, which cast training

as a global optimization problem that may be reduced to finding the lowest energy state of

a corresponding Hamiltonian [103]. Because QA can find a solution that is close to optimal

within a large number of possibilities, using this approach to either optimize or accelerate

the training state of machine learning is appealing. As part of an unsupervised machine

learning algorithm, O’Malley et al. used QA to recognize facial-feature patterns [128].

In another application, QA has been used to train a Boltzmann machine used in

classification methods. A Boltzmann machine is an artificial neural network with visual

and hidden nodes that encode information in their weighted couplings [70]. Whereas general

Boltzmann machines do not restrict connections between nodes, a restricted Boltzmann

machine only permits connections between nodes in different layers. In either model, the

underlying network is expressed in terms of a Ising model that uses the spin variables as

the nodes and the couplings to define connectivity [15]. QA with the Ising Hamiltonian

can therefore be used with either type of Boltzmann machine to find the optimal weighted

couplings. Training Boltzmann machines with AQC/QA has been tested experimentally

[102, 138].
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2.6.3 Quantum Simulation

An emerging application area for AQC/QA is the simulation of condensed-matter systems,

where quantum many-body effects are often critical to the behavior of the modeled material.

Understanding the behavior of materials is a challenge because simulating quantum many-

body systems on a classical computer is computationally expensive. As originally proposed

by Feynman [58], quantum computing offers a natural paradigm in which to both model and

simulate these highly correlated materials. For example, a key problem for materials science

is characterizing the energetic ground state of a material system; the formulation of AQC in

terms of a target Hamiltonian provides a natural connection to this problem.

One approach to this materials science application is to use QA to simulate the magnetic

phase transitions in an Ising Hamiltonian over a multidimensional lattice. This application

prepares the ground state of the Ising Hamiltonian defined in Eq. (4.19) and then probes the

prepared quantum state to recover the magnetization. By selecting the parameters for the

Ising Hamiltonian, an expected phase of matter can be programmed and characterized. A

recent demonstration validated the observed magnetization for different phases of a spin-glass

system [66].

This approach may also be used to simulate quantum phase transitions provided the

underlying Hamiltonian supports a model for such a system. For example, the Kosterlitz-

Thouless phase transition can be simulated in a transverse Ising Hamiltonian over a square-

octagonal lattice. The Kosterlitz-Thouless phase transition arises from frustrations and

quantum fluctuations within this model Hamiltonian, and QA-based simulations have been

validated directly against classical simulations [90]. The programmability of the target

Hamiltonian enables simulation by QA to test many different model phases of matter.
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Chapter 3

Tuning Strategy Methods

Many prominent questions remain about the expected physical and computational behavior

of AQC, including clarification about how nonadiabatic effects impact the performance of

QA devices as well as how the optimal run-time can be realized without prior knowledge of

the underlying energy landscape [145, 108]. The design, development, and demonstration

of reliable and programmable adiabatic quantum computers also remains an open endeavor.

The idealized setting for satisfying the adiabatic condition exactly has yet to be realized

in practice, and robust models for describing nonadiabatic effects will require better

characterization about the underlying physical systems. Existing demonstrations that relax

the adiabatic condition have made remarkable progress in the controllability of QA, but

experimental evidence remains mixed on the computational performance, largely because

of the relatively small amount of data that can be processed by these devices, which is

insufficient for best-in-class comparisons.

Further experimental investigations into computational scaling using larger-capacity

devices will help identify the significance of nonadiabatic effects. However, scaling AQC

to arbitrarily large capacities will likely require methods for managing and correcting faults

from noise in the devices and errors in the controls. The principles of fault-tolerant operation

are well defined within the context of the circuit model of quantum computation, where

redundantly encoded quantum states are actively corrected in the presence of noise. These

principles may also apply to AQC, but a complete theory of fault-tolerant adiabatic quantum

computation has yet to be developed.

38



Assuming the engineering of scalable quantum devices is achieved, AQC can be expected

to have significantly affect computational science. Already, the formal reduction of many

combinatorial optimization problems to the Ising problem have made AQC an attractive

model for numerous known applications. However, AQC supports an even broader class of

Hamiltonians, including those that are complete for BQP and QMA, and how this can be

leveraged for new methods of quantum computation remains to be seen.

This research focuses on developing a benchmarking strategy for QA, using QA for

combinatorial optimization, and understanding how tuning strategies/controls can mitigate

nonadiabtic dynamics and improve the quality of solutions. This dissertation involved

developing a framework for solving problems using the D-Wave 2000Q with the SAPI libraries

in Python 2.7 and later the Ocean tools with Python 3.4. This software contains the tools

needed to interact with the D-Wave hardware to solve problems as Ising Hamiltonians and

configure the pre-processing, annealing, and post-processing controls [41].

This framework takes any QUBO or Ising Hamiltonian, converts it to quantum Ising,

prepares a set of controls to be applied to the D-Wave hardware or Hamiltonian, embeds the

Hamiltonian onto the hardware, runs a certain number of samples with specified controls,

receives the solution state back from the D-Wave, detects errors, interprets those results with

post-processing, and benchmarks the solution states for quality against a brute force solver.

A formulation was then developed for Markowitz portfolio optimization that could be solved

using QA. This formulation was implemented with random data (modeled after the stock

market) to investigate the performance of the quantum annealer and how QA controls affect

performance according to our benchmarks.

3.1 Quantum Annealing Platform for solving Quadratic

Unconstrained Binary Optimization Problems

Optimization is integral to many scientific and industrial applications of applied mathemat-

ics, including verification and validation, operations research, data analytics, and logistics,

among others [131, 161]. In many cases, exact methods of solution, including stochastic
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optimization and quadratic programming, are computationally intractable; novel heuristics

are used frequently to solve problems in practice [96]. QA offers a novel meta-heuristic

that uses quantum mechanics for unconstrained optimization by encoding the problem cost

function in a Hamiltonian [57, 118]. Recovery of the Hamiltonian ground state solves the

original optimization problem and this approach has been mapped to a variety of application

areas [52, 121, 157, 112]. Several experimental efforts have configured quantum annealers

[79, 98, 164], and application benchmarking of these systems has shown that QA can find

the correct result with varying probability of success [87, 93, 178, 76, 129, 9, 6].

3.1.1 Quantum Annealing

As discussed for AQC in Chapter 1, under ideal conditions, forward annealing evolves a

quantum state Ψ(t) under the time-dependent Schrödinger equation

i~
∂

∂t
Ψ(t) = H(t)Ψ(t) t ∈ [0, T ] (3.1)

where T is the total forward annealing time and the time-dependent Hamiltonian is

H(t) = A(s(t))H0 +B(s(t))H1. (3.2)

where s(t) ∈ [0, 1] is the control schedule and time-dependent amplitudes A(s) and B(s)

satisfy the conditions A(0) � B(0) and A(1) � B(1). I consider the initial Hamiltonian

H0 = −
∑n

i σ
x
i as a sum of Pauli-X operators σxi over n spins. The final Hamiltonian H1

represents the unconstrained optimization problem with a corresponding ground state that

encodes the computational solution. Only problems represented using the Ising Hamiltonian

were considered:

H1 =
∑
i

hiσ
z
i +

∑
i,j

Ji,jσ
z
i σ

z
j + β (3.3)

where hi is the bias on the ith spin, Ji,j is the coupling strength between the ith and jth spin,

σzi is the Pauli-Z operator for the ith spin, and β is a problem-specific constant. The Ising

Hamiltonian is well known for representing a variety of unconstrained optimization problems

[105].
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Instantaneous eigenstates at time t are defined as

H(t)Φj(t) = Ej(t)Φj(t) (3.4)

where j ranges from 0 to N−1 with N = 2n the dimension of the Hilbert space. For an initial

quantum state prepared in the lowest-energy eigenstate at time t = 0, meaning Ψ(0) = Φ0(0),

adiabatic evolution under the Hamiltonian in Eq. (3.2) to time T will prepare the final state

Ψ(T ) = Φ0(T ) with high probability provided T is sufficiently large. In particular, the

evolution must be much longer than the inverse square of the minimum energy gap between

the ground and first excited states [57]. At time T , the prepared quantum state is measured

in the computational basis to generate a candidate solution for the encoded problem.

Another variation of QA reverses the time-evolution process by beginning in an eigenstate

of H1. Known as reverse annealing, the initial quantum state evolves under Eq. (3.2) in the

reverse direction. The Hamiltonian starts as H1 at time t = 0 and evolves backward to a

point sp in the control schedule that corresponds to time t1. The Hamiltonian then pauses for

a time tp = t2− t1 before evolving in the forward direction from the value sp at time t2 back

to the final Hamiltonian at time T ′, where the latter time represent the reverse annealing

time. The control schedule for reverse annealing is then defined as [174, 132]

s′(t) =


1 + (sp−1)

t1
t, 0 ≤ t ≤ t1

sp, t1 ≤ t ≤ t2

sp + (1−sp)
(T ′−t2)(t− t2) t2 ≤ t ≤ T ′

(3.5)

The differences in the control schedules of forward and reverse annealing are demonstrated

in Figure 6, where a linear reverse annealing schedule is compared with a linear forward

annealing schedule using the amplitudes A(s) = (1 − s) and B(s) = s. Notably, forward

annealing controls increase monotonically with time whereas reverse annealing controls

include a change in the direction of the control schedule in which the ramp time from s = 1

to sp is tr = t1, the time paused at sp is tp, and the quench time back from sp to s = 1 is

tq = T ′ − t2.
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3.1.2 Computational Methods

The D-Wave 2000Q quantum annealer was used for all experiments. The probability of

success, the probability of chain breaks, and the energy distribution across each problem

instance was calculated. For each instance, these metrics were estimated by collecting Ns =

1, 000 samples of the computed solution. D-Wave’s SAPI with Python 2.7 and later ocean

tools with Python 3 was used to solve each instance of Markowitz portfolio selection using the

hardware controls outlined in Sec. 3.1.3 [41]. Experiments began with the D-Wave 2000Q 2

which includes the spin reversal, embedding, anneal time experiments, and the majority

of reverse annealing experiments. However, this machine was decommissioned during the

reverse annealing experiments and the remaining experiments including the rest of the reverse

annealing and chain strength experiments were solved using the D-Wave 2000Q 5 which is

thought to have lower noise on the hardware. However, there was no major differences in

probability of success and probability of errors between two machines for problems with

the same set of controls. 1, 000 samples were collected per problem over a set of 1, 000

problems for forward annealing examples an 100 problems for revere annealing examples.

The majority vote post-processing technique was implemented for any broken chains to

interpret raw solutions returned by the D-Wave 2000Q. The program implementation of these

experiments are available online and data is available upon request [Grant and Humble].

For benchmarking purposes, each problem instance was also sovled using brute force

search for the minimal energy solutions of the QUBO formulation. The complete energy

spectrum was computed for each portfolio instance. These energy spectrum and the

corresponding states were then used as ground truth for testing the accuracy of results

obtained from QA. By sorting the spectrum, the probability of success was benchmarked for

reverse annealing using initial states ei sampled from these different parts of the spectrum.

The framework used to solve all QUBO problems is provided in Appendix A.

3.1.3 Quantum Annealing Controls

A subset of controls was investigated which are available for the D-Wave 2000Q, a

programmable quantum annealer composed from an array of superconducting flux qubits
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operated at cryogenic temperatures [26]. The D-Wave 2000Q consists of up to 2048 physical

qubits arranged in a sparsely connected array whose governing Hamiltonian is described by

a time-dependent, transverse Ising Hamiltonian [159] for which the Hamiltonian parameters

in the device can be programmed individually. This research used the D-Wave 2000Q 2 and

2000Q 5 both of which had fewer than 2048 qubits due to hardware defects. This design

enables a broad variety of computational problems, such as portfolio optimization, to be

realized. The following sections briefly review some of the controls available to influence the

success of solving these problems using QA.

Problem Embedding

As discussed in Sec. 2.5.2, embedding algorithms map the logical problem onto the physical

hardware of the QA device. The D-Wave 2000Q quantum annealer has a maximum

connectivity of 6 with a Chimera graph structure. Problems with high connectivity can

be embedded on this Chimera graph structure with minor embedding algorithms such as

CMR and clique embedding. A representative example of the output from these methods is

shown in Figure 7 using a fully connected problem with 20 logical spins. Both methods are

available in the D-Wave Ocean software library [42]. CMR and clique embedding algorithms

were used to test which embedding protocol produces better quality solutions. Because an

optimal embedding algorithm may be problem-dependent, this methodology can be used to

test embedding algorithms for different problem structures.

The research that has developed and implemented embedding algorithms shows that

these algorithms enable solving problems with higher connectivity than the hardware would

otherwise allow. Experiments for this dissertation compared CMR with clique embedding

for a set of fully connected problems for solution quality.

Chain Strength

As discussed in Sec. 2.5.2, chain strength k is negative bias strength applied to the intra-chain

couplings of an embedding. For all experiments, the magnitude of k was high relative to the

inter-chain couplings. The default chain strength for the D-Wave 2000Q quantum annealer

is −1 [41]. For experiments that investigated annealing controls and embedding controls, all
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hi and Ji,j values were normalized to range [−1, 1]. The chain strength was then set to −1,

which is much stronger than the inter-chain couplings, which were around 10−2. Experiments

for this dissertation also investigated the optimal chain strength; for these experiments, hi

and Ji,j values were again set to a range [−1, 1] and chain strength varied between 0 and −2

to test the effects on solution quality.

Post-Processing

As mentioned in Sec. 2.5.2, post-processing methods are used to interpret chains with

inconsistent values. The controls include discard, which throws out any solutions with

broken chains; majority vote, which chooses the binary value that is counted to appear

most frequently within the chain; and greedy descent, which is a hybrid algorithm that

searches for the lowest energy by randomly flipping the value of bits that had a broken

chain. Although discard is perhaps the most useful for analyzing the true performance of

the quantum annealer, majority vote is useful in many cases for circumnavigating small

errors in the chain. If many broken chains are split randomly between binary values, the

D-Wave should reveal a low probability of success. If a tie exists in the vote for a chain, the

D-Wave 2000Q post-processing program chooses a 1 [41]. Thus, majority vote does not hide

inherent issues with noise or configuration. However, implementing the greedy descent could

return high probability success in cases in which chains are broken with high probability,

and therefore can mask poor QA performance. Greedy descent may be useful for studies

in hybrid quantum-classical computing. Majority vote was used until the later experiments

that explored each of these post-processing methods and their effect on probability of success

relative to chain strength.

Spin Reversal

As discussed in Sec. 2.5.2, spin reversal transforms are used to mitigate the influence of bias

errors in the device that appear from complex dynamics [92]. Spin reversal was implemented

using D-Wave’s native algorithm, which redefines the Hamiltonian by flipping the sign of the

qubit biases and couplings for a random set of individual spins sr → −sr prior to annealing,
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where for a spin being transformed,

hr → −hr

Ji,j → −Ji,j
(3.6)

for either i = r or j = r. Because this mapping transforms entire spins, the Ising Hamiltonian

energy is preserved and the problem is not altered. The number of spin reversal transforms

g for a set of samples Ns is the tunable control in which the samples are equally distributed

among the g transformations. Spin reversal experiments described in Chapter 4 searched for

optimal g for a particular optimization problem with random data.

Annealing Schedules

Tailoring the annealing amplitudes A(s(t)) and B(s(t)) is perhaps the most direct method

to control forward annealing. The annealing schedules control the rate of change of the H(t),

which must be sufficiently slow to approximate the adiabatic condition [33]. Figure 8 shows

the D-Wave 2000Q schedule. While forward annealing on the D-Wave 2000Q, A(s(t)) >>

B(s(t)) at t = 0, A(s(t)) decreases and B(s(t)) increases for 0 < t < T , and B(s(t)) >>

A(s(t)) at t = T .

The optimal annealing time is problem-dependent and inversely proportional to the

minimum energy gap [57], and in general, the value and position of the minimum energy

gap for a given H(t) is typically unknown and hard to identify. Extending the annealing

time T arbitrarily long may not only be limited by hardware parameters but also be counter-

productive because of competing thermal processes that depopulate the ground state [142, 7].

An upper limit exists for the total job time (NsT ≤ 1 s) as well as total annealing time (T ≤ 2

s) on the D-Wave 2000Q.

When reverse annealing, three primary parameters for control exist: initial state, pause

point sp, and pause duration tp. Reverse annealing starts from an initial state that may be

a best-guess state, a known state, or a random state. Two reverse annealing heuristics are

reinitialized and iterative. Although both heuristics start the set of samples with a specified

initial state, reinitialized reverse annealing resets the initial state to the specified state for
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each sample whereas iterative reverse annealing sets the initial state for each subsequent

sample to the found/read-out state of its preceding sample.
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Chapter 4

Benchmarking Methods

4.1 Quantum Annealing Metrics

The research in this dissertation benchmarks the quality of solution returned by the quantum

annealer both in the probability of finding the most optimal solution and the probability for

the solution to contain errors from non-adiabatic dynamics. These metrics are obtains by

comparing the solution of each problem returned by the quantum annealer to the optimal

solution found with a brute force solver. QA is characterized QA using the probability of

success

ps = |〈Φ0(T )|ρ|Φ0(T )〉|2 (4.1)

defined as the overlap of the final, potentially mixed quantum state ρ prepared by QA

with the pure state describing the expected computational outcome Φ0(T ). Empirically,

the probability of success is estimated from the frequency with which the observed solution

state matches the expected outcome. When the expected ground state solution is known,

the statistic δi = 1 if the i-th sample matches the known ground state and δi = 0 if it does

not. For the k-th problem Hamiltonian instance, the estimated probability of success is then

defined as

p̃(k)s =
1

Ns

Ns∑
i=1

δi (4.2)
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where Ns is the total number of samples. The average over an ensemble of Np problem

instances is defined as

p̃s =
1

Np

Np∑
k

p̃(k)s . (4.3)

A second metric for characterizing QA performance, and especially the non-adiabatic

dynamics, is the number of chain breaks observed in the recovered solution samples. As

noted previously, a chain break is observed when the chain of physical qubits embedding

a logical spin has more than one unique spin value. The probability of chain breaks for a

problem instance is given by

p̃
(k)
b =

1

Ns

Ns∑
i=1

εi (4.4)

where the statistic εi = 1 when the i-th sample solution contains at least one broken chain

for any of the logical spins and εi = 0 when no embedded chain is broken. The average

probability of chain breaks over an ensemble of Np problem instances is then defined as

p̃b =
1

Np

Np∑
k

p̃
(k)
b . (4.5)

The effects of chain breaks can be mitigated by post-processing methods, such as majority

vote, which make hard decisions on the logical spin value. The density of chain breaks is

also analyzed for each problem to determine how chain strength control affects the severity

of chain breaks from noise. The average ratio of broken chains per problem is given by

r̃
(k)
b =

1

Ns

Ns∑
i=1

cb
N

(4.6)

where cb is the number of broken chains and N is the number of qubits and therefore the

total number of chains in the sample. This benchmark is used to plot the average ratio of

broken chains for each of the problems for a particular problem size. The average ratio of

broken chains for all problems is given by

r̃b =
1

Np

Np∑
k

r̃
(k)
b . (4.7)
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This benchmark is used to plot the average ratio of problem chain breaks for each problem

size. The final benchmark was used to determine the probability for each qubit in an intra-

coupling to differ from the global minimum solution when a chain breaks (p̃q).

p̃q =
1

Nb

Nb∑
i=1

qb (4.8)

where Nb is the number of broken samples for each problem and qb is a binary variable

indicating whether the qubit in the broken chain is incorrect. This benchmark was used to

plot a heatmap of the probability of each qubit to be faulty for all chains in the embedding

for each problem size.

Although these metrics quantify the probability with which QA recovers the correct solu-

tion, additional information about computational performance comes from the distribution of

all solution samples obtained. In particular, the distribution over sample energies provides a

representation for the weight of errors in the solution samples. A distribution concentrated

around the lowest energy indicates a small number of errors in the computed solutions,

whereas a broad or shifted distribution hints at a larger number of errors. The energy

computed from the i-th solution sample is denoted as E(i) and the j-th energy bin is defined

as hj. The bin hj counts the number of samples with an energy in the range [j, j+1]∆ where

∆ controls the granularity of binning the energies. The resulting set {(j∆, hj)} approximates

the energy distribution of the sampled solutions.

4.2 Portfolio Selection

Portfolio optimization selects the best allocation of assets to maximize expected returns

while staying within the budget and minimizing financial risk. The Markowitz theory for

portfolio selection focuses on diversifying the portfolio for risk mitigation [107]. Instead of

allocating high percentages of a budget toward assets with the highest projected returns,

the budget is distributed over assets that minimize correlation between the asset’s historical

prices. In this model, the covariance between purchasing prices serves as a proxy for risk in
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which assets are considered to be more risky the more positively correlated they are. This

section reviews the methods by which the benchmark problems are generated and solved.

Markowitz portfolio optimization is condisered as a quadratic programming problem that

determines the fraction of available budget b to allocate toward purchasing assets with the

goal of maximizing returns while minimizing risk. This approach to portfolio optimization is

known to be NP-HARD [29] which makes quantum annealing a promising method for solving

these problems [165, 150, 113].By selecting a partition number w, the fraction pw = 1
2(w−1)

represents the granularity of the partition. The portfolio optimization problem selects how

many of those partitions to allocate toward each asset with an integer zu. Thus, the fraction

of b to invest in each uth asset is given by pwbzu, and portfolio optimization identifies how

much of the m assets to select given the budget b and a risk threshold c. Thus, portfolio

selection is cast as

max
z

m∑
u=1

ruzu

s.t.
m∑
u=1

pwbzu = b,

m∑
u,v=1

cu,vzuzv ≤ c

(4.9)

where for the uth asset, ru is the expected return and cu,v is the historical price correlation

between assets u, v.

In Eq. (4.9), the first term represents maximization of the expected returns over the

available assets. Many methods can forecast expected returns (e.g., based on market price,

expert judgement, and historical price data) [73, 109]. For simplicity, expected returns are

modeled as

ru = pwāu (4.10)

where āu is the average of au, the history of price data for the uth asset. The first constraint

in Eq. (4.9) places a hard constraint on the total allocation of assets to sum to b. This

constraint penalizes portfolios that do not allocate the entire budget as well as those that

over-commit. Finally, the second constraint accounts for diversification by asserting that

the sum of covariance between asset prices cu,v be less than or equal to the risk threshold
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c. The historical price covariance is calculated as the correlation between pairs of assets by

comparing the pw fraction of each asset’s historical price data. Here, “covariance” is defined

as

cu,v =
p2w
∑Nf

l=1(au,l − āu)(av,l − āv)
Nf − 1

(4.11)

where au,l is the lth historical price value for asset u and Nf is the number of price points in

the historical data.

This variation of Markowitz portfolio selection is solved using QA by casting the

formulation in Eq. (4.9) into QUBO. The integer variable zu is expressed as a w-bit binary

expansion

zu =
w∑
k=1

2k−1xi(u,k) (4.12)

with xi ∈ {0, 1} and the composite index i(u, k) = (u− 1)w + k. The expected returns are

then expressed as

ruzu =
w∑
k=1

2k−1ruxi(u,k) (4.13)

while the allocation constraint becomes the penalty term

−
( m∑
u=1

w∑
k=1

2k−1pwbxi(u,k) − b
)2

(4.14)

A correlation threshold c = 0 is considered such that the correlation constraint becomes

m∑
u,v

cu,vzuzv =
m∑
u,v

w∑
k,k′

2k−12k
′−1cu,vxi(u,k)xj(v,k′). (4.15)

Our formulation of Markowitz portfolio selection as an unconstrained optimization problem

then becomes
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max
x

θ1

n∑
i

rixi

− θ2(
n∑
i

2k−1bpwxi − b)2

− θ3
n∑
i,j

ci,jxixj

(4.16)

where the problem size n = mw, ri = 2k−1ru, ci,j = 2k−12k
′−1cu,v, and θ1, θ2 and θ3 are

Lagrange multipliers used to weight each term for maximization or penalization. More

information regarding the binary expansion technique used when generating Markowitz

portfolio optimization see Appendix B.

4.2.1 Unconstrained Markowitz Formulation

The unconstrained portfolio optimization problem in Eq. (4.16) is formalized to QUBO form

as

min
x

( n∑
i

qixi +
n∑
i,j

Qi,jxixj + γ
)

(4.17)

where qi is the linear weight for the ith spin, Qi,j is the quadratic weight for interactions

between the ith and jth bits, and γ is a constant. Our definition of QUBO expresses

optimization as minimization by switching the sign of Eq. (4.16) to be consistent with the use

of QA to recover the lowest-energy state. The corresponding relationships with the original

problem instance are given as

qi = −θ1ri − 2θ2b
2pw

Qi,j = θ2b
2p2w + θ3ci,j

γ = θ2b
2

(4.18)

Similarly, the quadratic binary form may be reduced to a classical Ising Hamiltonian

H(s) =
∑
i

sihi +
∑
i,j

sisjJij + β (4.19)
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where spin si ∈ {−1, 1} is defined by si = 2x1−1 with s = (s1, s2, . . . , sn) while hi is the spin

weight, Jij is the coupling strength, and β is a problem-specific constant. The parameters

for the Ising Hamiltonian are given as

Ji,j =
1

4
Qi,j

hi =
qi
2

+
∑
j

Ji,j

β =
1

4

∑
i,j

Qi,j +
1

2

∑
i

qi + γ

(4.20)

The classical Ising formulation is then converted into a corresponding quantum Ising

Hamiltonian given by Eq. (3.3) using the correspondence si → σzi .

4.2.2 Markowitz Data Generation

For purposes of benchmarking, an ensemble of problem instances was generated by sampling

from uniform random price data with a seed of b/5. A random number was drawn as the

initial price au,1 and every subsequent historical price point up to the purchasing price was

−25% to +25% of the previous price au,l. The price range was set to be between b/10 and

b with Nf = 100 historical price points per asset. Additionally, all au,l are normalized by

au,Nf
to keep all asset prices in a similar range. Problem formulation and data generation

methodology can be found in Appendix ??

Problem controls are set to θ1 = 0.3, θ2 = 0.5, θ3 = 0.2 in the problem instances in which

θ2 was set higher to enforce the budget constraint. These weights were chosen after testing

which combination stayed within budget and gave some diversity. By keeping θ2 constant

and increasing θ3 while decreasing θ1, an investor could increase the diversity relative to the

potential returns and vice versa when decreasing θ3 relative to θ1. There are 1, 000 problems

generated for each problem size with m = 2, 3, 4, 5 assets and w = 4 slices. In Fig. 9, the

histogram of all Ji,j coupler values and hi linear qubit weight values is shown for the 1000

problems in each problem size n. Together the Ji,j and k values compose the inter-chain and

intra-chain coupler weights respectively as shown in Equation 2.10.
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Consistently, the same clique embedding is used for all problems and all four problems

sizes n as pictured in Figure 21. These graphs are embedded onto the D-Wave 2000Q

processor and chain strength k is tuned to benchmark performance. All benchmarks are

implemented and the p̃s is found by comparing the quantum annealing solutions to that of

a brute force solver which finds the global minimum solution including any degeneracy.
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Chapter 5

Quantum Annealing Benchmarking

Results

5.1 Problem Controls

QA controls are benchmarked by evaluating their influence on the probability of success

and probability of chain breaks across problem instances. I first characterize how problem

parameters influence the baseline performance by estimating the probability of success for

forward annealing using T = 15 µs, g = 0, and a randomized embedding strategy. As shown

in Figure 11, I compare p̃s for two cases of w = 1 and w = 4 across increasing n. The

estimated probability of success for problems with w = 4 is consistently higher for problems

with no slicing.

These results are explained by the energy spectra for the different problem parameters,

which indicate sharp differences in the density of states. As shown in Figure 12, a typical

problem instance with w = 4 has a much higher density of states than those with no slicing

(w = 1). Intuitively, the single-slice behavior results from the specification that the price

for each asset is proportional to budget, and, therefore, only a single asset may be selected

without penalty when w = 1. However, the number of satisfying solutions v increases for
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arbitrary w combinatorially, and, as shown in Appendix 5.4,

v =
(2w−1 +m− 1)!

(2w−1)!(w − 2)!
. (5.1)

Consequently, the probability to recover the lowest-energy state competes with these closely

spaced, higher energy solutions, which leads to a corresponding decrease in the probability

of success. For the remaining benchmark tests below, w = 4 was chosen as it represents a

more challenging test for the quantum annealer as well as a greater interest to real-world

financial applications.

5.2 Pre-processing Controls

5.2.1 Embedding Benchmarks

Embedding generates and places the physical spin chains for each logical spin on the QA

hardware. The CMR and clique embedding algorithms described in Sec. 3.1.3 were evaluated

by estimating the probability of success across problem sizes of m = 8, 12, 16, and 20 logical

spins. For all problem instances of a same problem size, I use the same embedding because

they require the same number of fully connected logical spins. The parameters of the

embedded Ising Hamiltonian were set by scaling the inter-chain couplings Ji,j to lie in the

range [−1,+1]. Allll Ji,j were scaled using a rescale factor of 1
jmax

, where jmax is the largest

Ji,j so all embedded Ji,j = 1
jmax

Ji,j. This scales all Ji,j to be between 1 and −1. The intra-

chain coupling strength is set to −1 to have a negative bias stronger than the Ji,j values

which range −10−1 ≤ Ji,j ≤ 10−1 due to our data generation and normalization techniques.

The average chain length 〈lc〉 from CMR and clique embedding methods grows with

the number of logical spins n. The average is computed with respect to all chains in an

embedding and plotted with respect to n in Figure 13. As expected by Eq. (2.13), the clique

embedding method has a uniform chain length for each n. By contrast, the CMR method

generates chains of variable length, as indicated by the the average chain length and variance

shown in the plot.
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From each of the embedding methods, the probability of success and probability of broken

chains was estimated. As shown in Figure 14, very small differences were observed in both

metrics with increasing problem size. From fitting the resulting point to an exponential, p̃s

decays sub-exponentially with respect to n with rate −0.523 for the CMR embedding and

rate −0.528 for the clique embedding. It is found that p̃b grows at a sub-exponential rate of

0.1824 for CMR embedding and 0.1656 for clique embedding as n increases. There is not a

significant difference in the p̃s performance between CMR and clique embedding, but clique

embedding requires a fewer number of spins as n increases and shows a slight improvement

in p̃b. Therefore, I chose to use clique embedding for subsequent benchmarks.

5.2.2 Spin Reversal Benchmarks

As discussed in Section 2.5.2, embedding algorithms map a logical spin to many spins to

create chains. Coupling spins together via Ji,j on the D-Wave hardware can cause small

biases that are amplified by spin chains spread across the hardware. To mitigate these bias

errors, spin reversal transforms were employed which simply translate spin-up to spin-down

and vice versa for a random set of spins. This does not change the logical problem but

is instead aimed at mitigating the bias error across a spin chain. The control used for

conducting spin reversals is the number of transforms g to perform for a given job. There

are Ns

g
samples per transform. Nominal improvements were observed in Figure 15 by using

at least g = 2, with no advantage to using g > 2.

5.2.3 Chain Strength Benchmarks

As discussed in Section 2.5.2, embedding algorithms map a logical spin to many physical

spins to create chains. The first error is an excitation of the system in which the measured

sample solution is an excited state, and the second error excites only some physical qubits in

the chain, which causes a broken chain in the sample solution. One or both of these errors

can occur in a single sample. Increasing the chain strength k as shown in Equation 2.12,

should reduce the probability of chains breaking, but increasing k too much can result in

the intra-coupling strengths k overpowering the inter-chain coupling strengths Ji,j and thus
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increase the probability of chains breaking and the probability for the system to jump to an

excited state. By sweeping over chain strengths k = [0 → −2] where the strength of k is

characterize by it’s magnitude, it is observed that p̃s decreases as problem size n increases

for all k. This is visualized in Figure 16 where samples with broken chains are discarded

and counted as incorrect solutions. As expected, the chains with no intra-chain strength at

k = 0 have a p̃s = 0 because there is no intra-chain coupling. It is then observed that the

p̃s increases as chain strength increases until k reaches −0.5 or −1. For large k, a decrease

in the p̃s is observed. Similarly, as n increases, the p̃s decreases for all k , but the optimal k

varies by problem size. The reason for this can be found in Figure 9. Here it is observe that

for n = 8 the optimal k = −1.0 with maximum Ji,j value at 0.57 and for all other problem

sizes the optimal k = −0.5 where the Ji,j is below 0.3. As k becomes significantly stronger,

than the Ji,j strengths, the p̃s gradually decreases.

The type of errors that occur as k increases can be distinguished by analyzing the

probability of a sample solution containing broken chain(s) p̃b. This can be observed in

Figure 17 where samples with weak k have a high p̃b and samples with strong k have a much

lower p̃b. In particular, the errors shaping the p̃s as observed in Figure 16 for k = 0,−0.25,

and −0.5 are most evidently caused by the chains breaking. For small k, this is most evident

in Figure 18 where the difference in average ratio of chains that break for samples between

k = 0 and −0.25 reveals that fewer chains break per sample as k increases. For the case

of k = −0.5 it is observed that p̃b decreases as n increases again due to Ji,j being close to

0.5 in magnitude for smaller problem size. This demonstrates the likelihood for chains to

break when k and Ji,j are too close in magnitude. However, as k increases in magnitude

above −0.5, it is observed that the p̃s decreases up to an order of magnitude. While p̃b does

increase between k = −1.5 and −2, the p̃b for k > −0.5 is smaller than the pb of k = −0.5

but the p̃s is also smaller. This shows that as k become too strong, the errors that reduce

the p̃s are from the sample solution existing in an excited state. In accordance with the

literature, I observe evidence of a ”sweet spot” for k in Figure 16 where the p̃s for k = −0.5

is up to an order of magnitude higher than for stronger k at n = 20. However, the p̃b and

r̃b is also one or more magnitudes higher for k = −0.5 than for stronger k. Dips in the p̃s
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are evident when k is too weak causing a high p̃b and when k is too strong causing a higher

probability for the solution to exist in an excited state.

Although there is a clear link between the intra-chain strength k and the error rates

impacting p̃s, observing which chains break most frequently and where those chains break

reveals other factors that play a role in error rates. This can be seen in Figure 19 which

shows the probability for each qubit in a chain to be faulty for samples that have at least one

broken chain. In accordance with the theory, the probability of chains breaking increases

as the chain length increases with n. In addition, the qubits that are faulty with highest

probability are always on the end of a chain which suggests that errors propagate in a chain

starting from one of the ends. There is also a pattern in which chains break most frequently.

This suggests that the error rates are tied to the embedding. There is a distinction in which

chain indices break with higher probability (qubit chain index 0, 4, 8, 12, 16). If patterns in

chain breaks can be spotted through the embedding, then better post-processing methods

could be developed. The relative variance is high, ranging from 12% to 25% , but I assumed

that this is a good benchmark.

Upon closer analysis, comparing Figure 19 with the embeddings in Figure 21, broken

chains all follow a distinct pattern with clique embedding. In particular the chains with high

p̃q (qubit chain index 0, 4, 8, 12, 16) utilize the top-most physical qubits across all unit cells.

In addition, the 2 physical qubits which break with lowest probability in each of those chains

are always coupled within the unit cell as apposed to across unit cells as seen in Figure 20.

However, the placement on the hardware does not appear to have a strong impact where

Figure 21 shows the placement of the four embeddings used for all problems. These results

indicate that p̃q is strongly linked to the hardware embedding and which physical qubits are

utilized on the unit cell but not which unit cells are utilized.
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5.3 Annealing Controls

5.3.1 Forward Anneal Time Benchmarks

According to the adiabatic theorem, forward annealing more slowly should increase the

probability of the system remaining in the ground state and thus increase the probability

of success. The forward annealing time T is varied from 1 µs to 999 µs, which is the

broadest range accessible on the D-Wave 2000Q. As shown in the upper panel of Figure 22,

statistically insignificant changes in the probability of success are shown as annealing time

increased at each problem size. Fitting the average probability of success with respect to

problem size for the annealing time T = 100 µs yields a sub-exponential decay rate for p̃s

given by −0.528 and a sub-exponential growth rate for p̃b given by 0.1628 as n increases.

There is a statistically significant difference in the estimated probability of chain breaks

p̃b with respect to forward annealing time, as shown in the lower panel of Figure 22. For

T = 100 µs, a growth rate of 0.1656 is recovered for the probability of chain breaks with

respect to problem size.

5.3.2 Reverse Annealing Benchmarks

From the reverse annealing controls listed in Sec. 3.1.3, I designed three experiments based on

the ei for the reverse annealing heuristic that include (i) starting in the known ground state

e0, (ii) starting in the known first excited state e1, and (iii) starting in the lowest-energy

state obtained from 1000 forward annealing samples ef . I then swept over various schedules

to find the optimal sp with a range of [0.1, 0.9] and tp with a range of [15→ 800]µs. The tr

and tq parameters were set to be constant and symmetric at 5 µs each. Thus, the total anneal

time is T ′ = tr + tp + tq, where tp is the time parameter that was chosen for analysis. For all

experiments, 1000 samples were collected using the iterative reverse annealing schedule for

100 of the problems that were also sovled used in the forward annealing experiments. The

probability of success for reverse annealing was estimated with respect to different choices for

ei, sp, and tp. I compared the combined heuristic of reverse annealing with forward annealing
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with forward annealing alone with p̃s, p̃b, as well as the frequency of finding energies in excited

states to forward annealing alone 1.

By setting ei to the ground state, it was tested for parameters sp and tp that decrease

p̃s when the quantum annealer is fed the correct solution. For this experiment, p̃s can be

thought of as the probability of staying in e0.

p̃s(e0 → e0) = pf ∗ p̃s, (5.2)

pf ∗ p̃s =

∑Np

i αi
Np

∗
∑Np

i

∑Ns

j δij

Ns

, (5.3)

where pf is the probability that forward annealing found the ground state, αi ∈ {0, 1}

indicates whether forward annealing was found the ground state for the ith problem prior to

reverse annealing, and δij ∈ {0, 1} is a variable indicating whether the jth sample of the ith

problem was measured to be the ground state with reverse annealing. By setting ei = e1, I

tested whether reverse annealing enhances the probability to populate the ground state. For

these tests, p̃s estimates the probability of moving from an excited state to the ground state.

p̃s(ee → e0) = (1− pf ) ∗ p̃s, (5.4)

(1− pf ) ∗ p̃s =

∑Np

i (1− αi)
Np

∗
∑Np

i

∑Ns

j δij

Ns

. (5.5)

In addition to testing reverse annealing at ei = e0 and e1, reverse annealing was tested in

combination with forward annealing for which p̃s estimates the cumulative probability of

finding the correct solution state.

p̃s(R) = p̃(e0 → e0) + p̃(ee → e0). (5.6)

1After completing the majority of experiments on the D-Wave processor DW 2000Q 2 1, the remaining
experiments were performed on D-Wave processor DW 2000Q 5. This included the parametric tests of reverse
annealing with respect to s and tp. Prior to testing, computational consistency was confirmed between the
results generated using the first device and those using the second. The differences in p̃s and standard
deviation were evaluated between the processors by comparing a previous reverse annealing experiment on
the DW 2000Q 2 1 with the same experiment on the DW 2000Q 5. It was found that the same p̃s using
both devices and a standard deviation that was within 10−5 of the measurements on the previous D-Wave
processor.

61



For these experiments, I found it useful to primarily analyze p̃s(R)− p̃(e0 → e0) = p̃(ee → e0)

to determine if reverse annealing improved upon the p̃s of forward annealing.

The results from setting ei = e0 for each problem with a problem size of n = 20 where

m = 5 and w = 4 are shown in Figure 23. Because the computation begins in the correct

solution state, this test measures the probability by which reverse annealing introduces errors

into the correct solution. Ideally, p̃s will remain near unity for all sp and tp. It was observed

that reverse annealing causes the system to leave the ground state with p̃s reducing to on

the order of 10−5 by annealing back to at least s = .6 and increasing tp ≥ 200 µs.

The results from setting ei = e1 with a problem size of n = 20 where m = 5 and w = 4

for each problem is shown in Figure 24. A maximal value of 4.8× 10−4 for p̃s is found with

parameters s = 0.7 and tp = 800 µs. This is is a p̃s one order of magnitude higher than what

is observed with forward annealing. This suggests that if ei is very close to e0, there may be

some benefit to choosing reverse annealing over forward annealing.

When solving optimization problems for applications in practice, the ground state and

excited state will be unknown. However, one approach is to use reverse annealing in addition

to forward annealing by using the lowest energy state found with 1000 forward annealing

samples ef as ei for another 1000 samples of reverse annealing. The next experiment tests

whether reverse annealing used in combination with forward annealing increases p̃s with

a problem size of n = 20, where m = 5 and w = 4 . The experimental results from

setting ei = ef are shown in Figure 25. These tests were constructed to determine when

combining reverse annealing with forward annealing can improve upon forward annealing.

Therefore, I removed the 6 problems forward annealing provided an ei = e0, and thus p̃s

for this experiment is given by p̃s(R) − p(e0 → e0) in this analysis. Similar to the previous

experiment in Figure 24, the p̃s is at best on the order of 10−4 at parameters s = .7 and

tp = 400 µs, which is one order of magnitude greater than the forward annealing experiments.

Figure 25 shows a potential for reverse annealing to improve upon results found with

forward annealing in p̃s. Therefore, for a set of 100 problems solved with reverse annealing

and forward annealing, the p̃s of forward annealing (orange) alone, the p̃s of reverse annealing

alone (blue), and the p̃s with a selection of either forward annealing or reverse annealing

(green) was compared. If for a problem forward annealing at least one ground state was
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found, the forward annealing p̃s was plotted for that problem (6 problems); otherwise, the

reverse annealing p̃s was plotted (94 problems). The p̃s is measured over n ranging from

[8, 20]. The reverse annealing parameters are set to have an ei = ef , s = .7, and tp = 400 µs.

As shown in Figure 26, it was observed that when taking the combination of best results from

forward annealing and reverse annealing with ei = ef , p̃s improves by an order of magnitude

over forward annealing alone for n = [16, 20] with a sub-exponential decay at a rate of −.309.

Note that although the blue reverse annealing trend appears to perform the best, this trend

is artificially inflated because 6 of the problems have ei = e0, which has been demonstrated

in Figure 23 to yield a p̃s on the order of 10−2 at s = .7 and tp = 400 µs.

Next a histogram, as seen in Figure 27, visualizes all energies recorded from 1000 samples

returned for a set of 94 problems where forward annealing did not find e0 with n = 20.

Forward annealing is compared with reverse annealing where ei = ef . We observe even for

problems where neither reverse annealing or forward annealing found e0, reverse annealing

still on average finds a lower energy solution more often than forward annealing.

5.4 Combinations Constrained to the Budget

Assuming the optimal solution lies where the total value of assets bought equals the budget,

the number of solutions which need to be checked is drastically reduced. If we have 1 asset,

the only solution is buying the slice equal to 1. If we have 2 assets, the slice of the 2nd asset

is dictated by whichever slice is chosen from the 1st asset. If the number of slices chosen is w,

then we know that the slices correspond to 1, 1
2
, 1
4
, 1
8
, ..., 1

2w
. This gives a total of 2w+1 (since

we can also buy 0 for all slices) which are less than or equal to the budget. Mathematically,

this can be expressed as

# solutions =
2w∑
a1=0

2w−a1∑
a2=0

1 = 2w + 1. (5.7)

This is an equivalent problem to stating how many distinct terms are in the binomial

(a1 + a2)
2w .
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Extending this to an arbitrary amount of assets (m), this equates to finding how many

distinct terms are in the multinomial expansion (a1 + a2 + ... + am)2
w
, which can be found

using the following equation

# solutions =
m−1∏
a=1

2w + a

a
=

(2w +m− 1)!

(2w)!(m− 1)!
. (5.8)

5.5 Post-processing Experiments

Post-processing strategies are used to determine a logical value for a broken chain instead

of discarding the sample. In theory, majority vote can be a tool to improve p̃s for problems

where broken chains still retain some representation of the logical qubit. However, if noise

propagates through the chain of qubits or if k is too small for a chain to be a cohesive logical

qubit, then majority vote is essentially a random selection. Figure 19 shows that chains that

break with high probability also have half or more intra-chain qubits that break. Therefore,

majority vote is ineffective for this configuration of embedding, chain strength, and Jij value

range. Although it appears in Figure 28 that the majority vote p̃s has increased significantly

for k with a high p̃b, the p̃s does not surpass the p̃s of a random selection 1
2n

. The p̃b is

only marginally lower than for k = 0; however, a p̃s that deviates from random selection

is observed. Where n = [8, 12], k = −0.25 delivers a p̃s an order of magnitude lower than

random selection and at n = 16, a p̃s an order of magnitude higher than random selection.

From this, it can be concluded that if the chain strength is too low, majority vote could

deliver a p̃s lower than random selection due to strong bias errors deviating chains to a

particular value. For k = −0.5, a p̃b is seen that is higher than for k < −0.5 but delivers a p̃s

that is higher than for k < −0.5. However, majority vote does not improve over the results

found with discard for this control or any k ≤ −0.5. From these experiments, I concluded

that majority vote does not improve p̃s for sufficiently strong k.

If there is a discernible pattern for the chain breaks based on a particular embedding

algorithm, more intelligent post-processing methods can be utilized which filter out the

qubits which are most likely to be faulty within a broken chain. Because there is a clear

pattern in the error rates that can be observe for these problems with clique embedding, I
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propose a novel post-processing strategy which performs a voted selection for each logical

qubit where the choice is weighted according to the probability of each qubit ql in the chain

to be incorrect p̃q. The logical choice xi ∈ [−1, 1] with the highest weight Wi(xi) is selected

for the ith broken logical qubit chain of the mth sample. The formulation for the weight of

each logical choice is given by

Wi(xi) = (1−
lc∏
l=1

(σl ∗ p̃lq + σ′l))
lc∏
l=1

(σ′l ∗ p̃lq + σl) (5.9)

where σm = (xiql+1)
2

is the variable indicating if the lth qubit corresponds to the logical

choice xi and σ′l = (−xiql+1)
2

indicates if if the lth qubit corresponds to the opposing logical

choice |1 − xi|. It is observed that this method improves the p̃s by one or more orders of

magnitude for problems where there is a high pb. In particular, when k = 0.25 there is a high

p̃b but this post-processing strategy improves the p̃s by an order of magnitude for n = 20.

This result is far better than a random selection for samples with high p̃b which demonstrates

that there is still some part of the logical problem which survives when k is too weak. By

contrast, when k is too large in magnitude compared to the Ji,j values, all post-processing

strategies tested were ineffective because the non-adiabatic dynamics limiting the p̃s most

commonly causes the entire system to jump to an excited state instead of breaking the chain.

This can be observed in Figure 29.
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Chapter 6

Conclusions

By benchmarking the performance of tuning strategies for quantum annealing, this research

establishes that there are methods for improving solution quality for a set of portfolio

optimization problems. Furthermore, this research demonstrates a methodology for

determining an optimal set of controls and proposes a novel method for post-processing

solutions that contain errors. By analyzing the performance across a wide range of hardware

controls, current performance of quantum annealing hardware is evident. These experiments

cover a range of pre-processing, annealing, and post-processing controls to investigate the

performance of QA with Markowitz portfolio optimization. This dissertation provides a

methodology for choosing controls to optimize QA performance for future problems and

applications. This research also sets a benchmark on the performance of the current state of

the art in QA for problems such as portfolio optimization and also informs the QA community

of the quantum annealer’s capability for this application. By applying these results in a

meta-analysis with other problem classes, the QA community could determine the overall

effectiveness of various controls and their effects on p̃s and p̃b and inform future algorithm

and hardware development for tuning controls. These goals can be accomplished in part

with efforts to benchmark the solution quality when solving problems that are known to

be difficult for classical computational methods and when adjusting the available tuning

strategies of QA hardware.

By varying the problem controls such as n and w, an increase in the density of state

is seen for problems with higher problem size and an increase in number of slices. This is
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most likely associated with the number of viable solutions given by Eq. 5.1. As a result, I

found that the average probability of success for problems with w = 0 is much higher than

the problems with w = 4. Next, various forward annealing controls were tested including

the embedding algorithm, T , and g. Clique embedding was measured against CMR, and

it found that there was little difference between the two in p̃s, but the CMR had slightly

higher p̃b and a sub-exponential decay in p̃s of −.528 that is slightly higher than that of

clique embedding which yielded −.523. Thus, I chose to continue future experiments with

clique embedding with a design with fully connected problems such as Markowitz portfolio

selection in mind. When varying T = [1µs → 999µs], it was found that p̃b was slightly

higher for T = [1µs, 5µs], but increasing anneal time had very little to no improvement

on p̃s. For this reason, I chose to continue all future forward annealing experiments using

T = 100 µs where the exponential decay rate in ps was −.528. When varying g = [0, 10],

small improvements were found in p̃s between g = 0 and g = 2, where the exponential decay

rate became −.505 without much change from increasing the value of g further, and there

was no consistent difference in p̃b.

By sweeping over a range of chain strengths k, I was able to determine the optimal k by

problem size n. The optimal k is strongly linked to the ratio of Ji,j to k where if the k is at or

below the Ji,j range in magnitude, the p̃b greatly increases and the p̃s decreases due to chain

break errors. Conversely, if k is too strong in magnitude as compared to Ji,j, the p̃b increases

slightly and the p̃s can decrease by a full order of magnitude indicating that a k too strong

will increase the probability for the sample solution to be an excited state. By analyzing

the probability for each physical qubit in each chain to be faulty when a sample is broken

p̃q, I was able to visualize which chains break with highest probability and where they are

most likely to break. It was found that there are certain chains that break most frequently

which indicated that p̃q is strongly tied to the embedding, in this case clique embedding. The

chains typically break from the edges of the chain and the qubits that are coupled within a

unit cell were statistically that least likely to be faulty. Using this information, I present a

novel post-processing strategy which assigns a weight probability selection based on the the

p̃q. With this post-processing method, the p̃s was improved by several orders of magnitude

for weak k.
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I then tested reverse annealing methods with parameters ei, s, and tp. I began by

observing the results in p̃s and p̃b at n = 20. I consistently observed that p̃b was the

same order of magnitude as with the forward annealing experiments and p̃b was consistently

highest at s = .8. By setting ei = e0, it was observed that the p̃s decreased exponentially

as s increased. By setting ei = e1, reverse annealing had a p̃s an order of magnitude higher

than forward annealing, which allowed us to conclude that when ei is close to the ground

state, reverse annealing provides some advantage over forward annealing. Because in general

the ground state won’t be known for a problem, I developed a heuristic which sets ei = ef

where p̃s is an order of magnitude higher than using forward annealing alone. The p̃s is

then plotted as a function of n to compare reverse annealing with ei = ef , s = .7, and

tp = 400 µs to forward annealing with clique embedding, T = 100 µs, and g = 0 alone. In

particular, I used the p̃
(k)
s of forward annealing for the 6 problems where ei = e0 and the

p̃
(k)
s of reverse annealing for the 94 problems where ei 6= e0. Reverse annealing continued

demonstrating an order of magnitude increase in ps over forward annealing alone. Lastly,

by creating an histogram which plots the lowest energies found across 1000 samples for the

94 problems where ei 6= e0, I found that reverse annealing(ei = ef ) on average finds lower

energy solutions as compared with forward annealing.

Many prominent questions remain open about the expected physical and computational

behavior of AQC, which includes clarification about how nonadiabatic effects impact the

performance of QA devices as well as how the optimal run-time can be realized without

prior knowledge of the underlying energy landscape [145, 108]. The design, development,

and demonstration of reliable and programmable adiabatic quantum computers also remain

an open endeavor. The idealized setting for satisfying the adiabatic condition exactly has yet

to be realized in practice, and robust models for describing nonadiabatic effects will require

better characterization about the underlying physical systems. Existing demonstrations that

relax the adiabatic condition have made remarkable progress in controllability of QA, but

experimental evidence remains mixed on the computational performance, largely because

of the relatively small amount of data that can be processed by these devices, which is

insufficient for best-in-class comparisons.
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Further experimental investigations into computational scaling using larger-capacity

devices will help identify the significance of nonadiabatic effects. However, the scaling of

QA to arbitrarily large capacities will likely require methods for managing and correcting

faults from noise in the devices and errors in the controls. The principles of fault-tolerant

operation are well defined within the context of the circuit model of quantum computation,

where redundantly encoded quantum states are actively corrected in the presence of noise.

These principles may also apply to AQC, but a complete theory of fault-tolerant adiabatic

quantum computation has yet to be developed.

Assuming the engineering of scalable quantum devices is achieved, QA/ AQC can be

expected to have a significant effect on computational science. Already, the formal reduction

of many combinatorial optimization problems to the Ising problem has made QA/AQC an

attractive model for numerous known applications. However, AQC supports an even broader

class of Hamiltonians, including those that are complete for BQP and QMA, and how this

can be leveraged for new methods of quantum computation remains to be seen.

Among this wide range of open questions in the field of adiabatic quantum computation

and QA, this research focuses on developing a benchmarking strategy for QA, using QA for

combinatorial optimization, and understanding how tuning strategies/controls can be used

to mitigate nonadiabtic dynamics and improve the quality of solutions. This dissertation

involved developing a framework for solving problems using the D-Wave 2000Q. This

framework takes any QUBO or Ising Hamiltonian, converts it to quantum Ising, prepares

a set of controls to be applied to the D-Wave hardware or Hamiltonian, embeds the

Hamiltonian onto the hardware, runs a certain number of samples with specified controls,

receives the solution state back from the D-Wave, detects errors, interprets those results

with post-processing, and benchmarks the solution states for quality against a brute force

solver. A formulation was then developed for Markowitz portfolio optimization that can be

solved using QA. This formulation was implemented with random data (modeled after the

stock market) to investigate the performance of the quantum annealer and how QA controls

affect performance according to our benchmarks.
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A Solving QUBO problems on the D-Wave 2000Q

The following sections display the python 3 code that I used to develop the framework for

solving optimization problems including the Markowitz portfolio optimization problem on

the D-Wave 2000Q quantum annealer with their ocean tools [41]. The entire python project

can also be view in my git repository [Grant and Humble].

A.1 Framework for Solving QUBO on the Quantum Annealer

A framework to solve QUBO problems on the D-Wave 2000Q quantum annealer was built

using the ocean tools available in Python 3.5. This project started with the construction of

a Python class that takes a QUBO problem, converts it to a quantum Ising Hamiltonian,

embeds that Ising Hamiltonian onto the D-Wave hardware, anneals for a specified set of

controls, unembeds the problem, and retrieves the solution state.

Listing 1: Framework for solving QUBO as quantum Ising with the D-Wave 2000Q in

Python 3. The inputs include the QUBO matrix (qubo), number of logical spins (n),

number of samples (num samples), number of spin reversal transforms (spin), chain strength

(chain strength), annealing schedule (anneal), and embedding. We also need the D-Wave

url, token, and solver name for remote access. Additionally, for reverse annealing, we

provide the initial state (initial).

import numpy as np

from dwave . c loud import Cl i en t

import dwave

import dwave . embedding

import dimod

from dwave . system . samplers import DWaveSampler

# Create remote connect ion

conn = Cl i en t ( endpoint=ur l , token=token , s o l v e r=so lve r , proxy=None ,

↪→ p e r m i s s i v e s s l=False , r eque s t t imeout =60, p o l l i n g t i m e o u t=None ,

↪→ c o n n e c t i o n c l o s e=False , headers=None )

# Set parameters
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s e l f . params = {”answer mode” : ”raw” , ” a u t o s c a l e ” : True , ” po s tp roc e s s ” : ”” , ”

↪→ num reads” : num samples , ” num sp in r eve r sa l t r an s f o rms ” : s p i n r e v e r s a l ,

↪→ ” annea l s chedu l e ” : annea l s chedu le , ” i n i t i a l s t a t e ” : i n i t i a l s t a t e , ”

↪→ r e i n i t i a l i z e s t a t e ” : r e i n i t i a l i z e }

# Convert QUBO matrix in t o a QUBO d i c t i ona r y

qubo d ic t = {}

qubo d ic t . update ({ ( i , j ) : qubo [ i ] [ j ] for i in range (n) for j in range (n) })

# Get the s o l v e r

s o l v e r = DWaveSampler ( endpoint=ur l , s e l f . token , s o l v e r=s o l v e r )

# Set the range o f the I s i n g h and J va l u e s .

h range = [−2 , 2 ]

J range = [−1 , 1 ]

# conver t qubo to i s i n g and r e t r i e v e the h , J , and cons tant ( i s i n g o f f s e t ) .

(h , J , i s i n g o f f s e t ) = dimod . u t i l i t i e s . q u b o t o i s i n g ( qubo d ic t )

# Normalize h and J to be $−1 \ l e q h , J \ l e q 1$ .

h max = max( l i s t (map(abs , h . va lue s ( ) ) ) )

j max = max( [ abs ( x ) for x in l i s t ( J . va lue s ( ) ) ] )

i f h max > j max :

j max = s e l f . h max

r e s c a l e = j s c a l e / j max

h1 = dict ( ( k , ( v ∗ r e s c a l e ) ) for k , v in h . items ( ) )

i f len ( l i s t ( J . va lue s ( ) ) ) > 0 :

J1 = {key : r e s c a l e ∗ va l for key , va l in l i s t ( J . i tems ( ) ) }

else :

J1 = J

# Embed the I s i n g Hamiltonian onto the D−Wave hardware

Adjacency = s e l f . s o l v e r . adjacency #hardware adjacency

[ h0 , j 0 ] = dwave . embedding . embed is ing ( h1 , J1 , embedding , Adjacency ,

↪→ c h a i n s t r e n g t h )

# Solve I s i n g Hamiltonian on the D−Wave 2000Q

samples = s o l v e r . s a m p l e i s i n g ( h0 , j0 , ∗∗ s e l f . params )
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#Unembed samples wi th post−proce s s ing method ( Major i ty Vote shown here )

i s i n g s o l u t i o n s , idx = dwave . embedding . ma jo r i ty vo te ( samples , embedding )

qubo so lu t i on s = np . z e ro s ( ( len ( i s i n g s o l u t i o n s ) , len ( i s i n g s o l u t i o n s [ 0 ] ) ) )

for z in range ( len ( i s i n g s o l u t i o n s ) ) :

qubo so lu t i on s [ z ] = [ int ( x + 1) / 2 for x in qubo so lu t i on s [ z ] ]

# Find the I s i n g ene r g i e s and conver t to the QUBO ener g i e s

i s i n g e n e r g i e s = np . z e ro s ( len ( i s i n g s o l u t i o n s ) )

qubo ene rg i e s = np . z e r o s ( len ( qubo so lu t i on s ) )

qubo arrays = np . z e ro s (n , len ( qubo so lu t i on s ) )

for i in range ( len ( qubo so lu t i on s ) ) :

print ( 'h v a l s ' , l i s t ( h1 . va lue s ( ) ) )

s o l u t i o n = i s i n g s o l u t i o n s [ i ]

h energy = sum( l i s t ( h1 . va lue s ( ) ) [ v ] ∗ va l for v , va l in enumerate( s o l u t i o n

↪→ ) )

J energy = sum( J1 [ ( u , v ) ] ∗ s o l u t i o n [ u ] ∗ s o l u t i o n [ v ] for u , v in J1 )

i s i n g e n e r g i e s [ i ] = ( s e l f . h energy + s e l f . J energy )

qubo ene rg i e s [ i ] = ( ( i s i n g e n e r g i e s [ i ] / r e s c a l e ) + i s i n g o f f s e t )

return qubo so lu t i on s

return qubo ene rg i e s

A.2 Generating Data for Markowitz Portfolio Optimization

Listing 2: Methodology for generating random price data modeled after stock market in

Python 3.

import numpy as np

import random

p r i c e d a t a = np . z e ro s ( ( num prices , num assets ) )

p r i c e = random . Random( )

p r i c e . seed ( budget / 5)

percent = random . Random( )

percent . seed ( . 1 5 )

for i in range ( a s s e t s ) :
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s t a r t i n g p r i c e = p r i c e . uniform ( budget /10 , budget )

for j in range ( num prices ∗ problem number ) :

percent change = percent . uniform (− .25 , . 2 5 )

p r i c e d a t a [ j , i ] = s t a r t i n g p r i c e + s t a r t i n g p r i c e ∗ percent change

return p r i c e d a t a

A.3 Implementation of the Binary Slicing

Listing 3: Algorithm for normalizing the price data to represent fractions of the budget and

then expanding the price data in slices according to the binary slicing method in Python 3.

import numpy as np

# The b inary s l i c i n g s e r i e s expanded to the number o f s l i c e s s p e c i f i e d .

s l i c e l i s t = np . z e r o s ( num s l i c e s )

for i in range (0 , num s l i c e s ) :

s l i c e l i s t [ i ] = f loat (1 ) / f loat (2 ∗∗ i )

# Expand and normal ize the raw pr i c e data ( rpd expanded ) where each row i s the

# normal ized p r i c e po in t and each column i s a s l i c e d a s s e t .

s e l f . rpd expanded = np . z e r o s ( num prices , num assets ∗ num s l i c e s )

l = 0

for i in range ( num assets ) :

# The new a s s e t p r i c e s w i l l be a matrix where each column rep r e s en t s a

↪→ s l i c e

# and each row i s the normal ized p r i c e .

n e w a s s e t p r i c e s = np . z e ro s ( ( num prices , num s l i c e s ) )

# Normalize the p r i c e data f o r each a s s e t to the budget so t ha t the

# purchas ing p r i c e i s 1 .

n o r m p r i c e f a c t o r = budget / raw pr i c e da ta [ num prices − 1 , i ]

# Create new a s s e t p r i c e s f o r each s l i c e accord ing to the b inary s l i c i n g

# s e r i e s .

for j in range ( num s l i c e s ) :

for k in range ( num prices ) :

n e w a s s e t p r i c e s [ k , j ] = rpd [ k , i ] ∗ s l i c e l i s t [ j ] ∗

↪→ n o r m p r i c e f a c t o r
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# Expand the raw pr i c e data to inc l ude the new normal ized and s l i c e d p r i c e

# data arrays f o r each a s s e t .

rpd expanded [ num prices , l : l+num s l i c e s ] = n e w a s s e t p r i c e s

l = l + num s l i c e s

return rpd expanded

A.4 Building Portfolio Optimization QUBO

Listing 4: Methodology for generating QUBO from the Markowitz formulation in Python 3.

import numpy as np

exp re tu rns = np . z e r o s ( num assets ) # expec ted re turns

# Generate expec ted re turns us ing a s imple moving average .

for i in range ( num assets ) :

for j in range ( num prices − 1) :

h i s t o r i c a l r e t u r n s [ j , i ] = p r i c e d a t a [ j + 1 , i ] − p r i c e d a t a [ j , i ]

exp re tu rns [ i ] = np . mean( h i s t o r i c a l r e tu rn s [ : , i ] )

# Ca lcu l a t e the covar iance matrix .

qubo covar iance = np . z e ro s ( ( num assets , num assets ) )

for i in range ( num cols ) :

for j in range ( num cols ) :

qubo covar iance [ i , j ] = ( ( p r i c e d a t a [ num prices − 1 , i ] − np . mean(

↪→ p r i c e d a t a [ : , i ] ) ) ∗ ( p r i c e d a t a [ num rows − 1 , j ] − np . mean(

↪→ p r i c e d a t a [ : , j ] ) ) ) / ( num assets − 1)

# The purchas ing p r i c e f o r each a s s e t .

p r i c e s = s e l f . p r i c e d a t a [ s e l f . num rows − 1 , : ] . t o l i s t ( )

# A diagona l matrix wi th the vec to r o f expec ted re tu rns

QUBO returns = np . diag ( expec t ed r e tu rn s )

# The l i n e a r / d iagona l matrix wi th p r i c e p e n a l t i e s accord ing to the budget ( b ) .

QUBO prices l inear = np . diag ( [ x ∗ (2 ∗ b) for x in p r i c e s ] )

# The quadra t i c / o f f−d iagona l por t i on o f the p r i c e pena l t y term .

QUBO prices quadratic = np . outer ( p r i c e s , p r i c e s )
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# The l i n e a r QUBO term

q i = −( theta one ∗ QUBO returns ) − ( theta two ∗ QUBO prices l inear )

# the quadra t i c QUBO term

q i j = ( theta two ∗ QUBO prices quadratic ) + ( t h e t a t h r e e ∗ QUBO covariance )

# Bui ld the nxn QUBO matrix where n i s the number o f a s s e t s

qubo = q i + q i j

# Form QUBO as an upper t r i a n g u l a r nxn matrix

for c o l in range (0 , n−1) :

for row in range ( c o l +1, s e l f . n ) :

qubo [ row , c o l ] = 0

for row in range (0 , n−1) :

for c o l in range ( row+1, n) :

qubo [ row , c o l ] = 2 ∗ s e l f . qubo [ row , c o l ]

return qubo
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B Mathematical Derivations

B.1 Binary Slicing Expansion

Slicing allows purchasing an asset with a percentage of the budget instead of allocating the

budget toward a single asset. If a naive approach is used for slicing, where, for example,

the slices include buying an asset with 25%, 50%, and/or 75% of the budget, the same

effective problem will be considered multiple times (i.e., 25% + 50% = 75%). The maximum

number of assets that can be bought will be w∗(w−1)
2

. Therefore, to consider a single asset

with up to w∗(w−1)
2

assets being bought, (w∗(w−1)
2
≈ (N+1)2

2
for large N). The total considered

combinations is 2w−1.

B.2 Number of Combinations Constrained to the Budget

The binary slicing method was developed to eliminate redundancy in the solution space

because all solutions are considered at once on a quantum computer. If only powers of

2 are considered (because each “asset” can either be bought or not bought) slides would

include buying 1 asset, 50% asset, 25% asset. . . down to 1
2N

assets. This expansion

eliminates all redundancy and allows a maximum of 2w − 1 slices of a single asset to be

bought (2w − 1 ≈ 2N+1 for large w). Because the total number of considered combinations

remains the same, a dramatic increase in diversity of the search space is achieved at no

additional expense. Thus, the following binary slicing series is used 1, 1
2
, 1
4
, 1
8
.. 1
2w−1 where

each value is a fraction of the budget. Assuming the optimal solution lies where the total

value of assets bought equals the budget, the number of solutions that need to be checked

is drastically reduced. If we have 1 asset, the only solution is buying the slice equal to 1. If

we have 2 assets, the slice of the second asset is dictated by whichever slice is chosen from

the first asset. If the number of slices chosen is w, we know that the slices correspond to

1, 1
2
, 1
4
, 1
8
.. 1
2w−1 , which gives a total of 2w−1+1 (because we can also buy 0 for all slices), which

are less than or equal to the budget. Mathematically, this can be expressed as

solutions =
2w−1∑
a1=0

2w−1−a1∑
a2=0

1 = 2w−1 + 1 (1)
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This equation is an equivalent problem to stating how many distinct terms are in the

binomial (a1 + a2)
2w−1

.

By extending to an arbitrary amount of assets A, this formulation equates to finding how

many distinct terms are in the multinomial expansion (a1 + a2 + ...+ aA)2
w−1

, which can be

found using Eq. 2 :

solutions =
A−1∏
a=1

2w−1 + a

a
=

(2w−1 + A− 1)!

(2w−1)!(A− 1)!
(2)
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C Figures

Figure 1: The Bloch sphere is the geometric representation of a qubit ψ as a superposition
of two orthogonal states. Every point on the surface of the sphere corresponds to valid
qubit, whereas the states of a classical bit correspond only to the the north and south poles
designed as 0 and 1, respectively. A qubit is specified by the complex-valued coefficients a
and b, which may be defined in terms of the spherical coordinates θ and φ.

Figure 2: At t = 0, QA begins with a prepared state with uniform probability. During
the annealing steps, the probability begins to concentrate at the minimums. The dynamics
drive the probability toward the global minimum by final time T .
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Figure 3: A flux-qubit design based on a compound Josephson junction in which counter-
propagating currents induce a magnetic field. The flux qubit is encoded within the resulting
magnetic flux while externally applied control biases tune the current [79].
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Figure 4: The time-dependent energy eigenspectrum for the time-dependent Hamiltonian
used an example of Grover’s search algorithm for AQC where s = t

T
is the position in the

anneal schedule. The spectral gap between the ground state and first excited state changes
with time [148].
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Figure 5: The optimal local schedule for implementing Grover’s search using AQC accounts
for the time-dependent behavior of the spectral gap shown in Figure 4 where s = t

T
is the

position in the anneal schedule. This schedule tailors the dynamics to evolve more slowly
near the minimum spectral gap at s = .5 and faster outside of this region.
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Figure 6: The control schedule for reverse annealing (RA) compared with forward annealing
(FA) plotted with respect to time. The control schedule for forward annealing starts at
t = 0, s = 0 and anneals at a constant rate to t = T, s = 1, whereas the control schedule for
reverse annealing starts at t = 0 with s = 1, decreases to a value sp at time t1, pauses for
time tp = t2 − t1, and then increases to s = 1 at time T ′.
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Figure 7: The embedding of a 20 logical spin complete graph onto a Chimera graph
structure. Figure (a) is a complete K20 graph, which is fully connected with 20 nodes
and 190 edges where each node represents a logical spin and each edge is a coupling between
spins. Figure (b) is the CMR algorithm, which requires the allocation of 23 unit cells. Figure
(c) is the clique embedding algorithm, which requires the allocation of 15 unit cells. The
nodes represent physical qubits, lines are the couplings between physical qubits, and each
color is a different physical spin chain corresponding to a logic spin.
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Figure 8: Actual D-Wave schedule for the particular D-Wave 2000Q 5 machine measured
from s = 0 to s = 1 in increments of 0.001.
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Figure 9: A histogram of all Ji,j values for 1000 portfolio optimization problems for each
problem size n. This graph is normalized to the probability density.
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Figure 10: The clique embedding graphs used for all 1000 problems on the D-Wave 2000Q
hardware for problem sizes n.

Figure 11: The average probability of success over 1000 problems each with 1000 samples
using CMR, g = 0, and T = 15 µs. The comparison is between a set of problems from
problem sizes 8 to 20 for w = 1 (blue) and w = 4 (orange) The problems set to slices w = 1
are much less complex and therefore have a much higher probability of success.
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Figure 12: Probability histogram (100 bins) of all possible energies for problem of size 20
where a) is of w = 1 and b) is of w = 4. There is a higher density of states close to e0 in figure
b) and therefore more opportunities to jump to an excited state throughout the sample.

Figure 13: The average chain length over all chains for a given embedding clique and CMR
embedding as n increases.
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Figure 14: The p̃s (top) and p̃b(bottom) on a log scale over 1000 samples for 1000 problems
comparing CMR to clique embedding for parameter settings of g = 0 and T = 100 µs.
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Figure 15: The average ps (top) and pb(bottom) on a log scale over Ns = 1000 samples
for Np = 1000 problems at g = 0 → 10 for parameter setting of T = 100µs and clique
embedding.
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Figure 16: The average probability of success p̃s comparing intra-chain strengths k = [0→
−2] for 1000 samples of 1000 problems for each problem size n. All samples with one or
more broken chains are discarded (no post-processing) and counted as incorrect.

Figure 17: The average probability that a sample has at least one broken chain p̃b comparing
intra-chain strengths k = [0→ −2] for 1000 samples of 1000 problems for each problem size
n.
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Figure 18: The average ratio of broken chains in a sample r̃b comparing intra-chain
strengths k = [0→ −2] for 1000 samples of 1000 problems for each problem size n.

Figure 19: A heat map showing average probability for each physical qubit in a chain to
break for a sample over 1000 problems each with all broken samples where k = −0.5. The
comparison is between a set of problems from problem sizes n.
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Figure 20: The clique embedding graphs for problem size n = 20 where the intra-unit cell
coupling for qubit chains 0, 4, 8, 12, 16 are boxed and correspond to the qubits which have
the lowest probability of being faulty for those chains.
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Figure 21: The clique embedding graphs used for all 1000 problems on the D-Wave 2000Q
hardware for problem sizes n.

112



Figure 22: The average p̃s (top) and p̃b(bottom) on a log scale over 1000 samples for 1000
problems at various annealing times for parameter settings of g = 0 and clique embedding.
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Figure 23: The p̃s (left) and p̃b (right) for reverse annealing where ei = e0 and as s =
[0.1→ 0.9] and tp = [15µs→ 800µs] for n = 20 with m = 5 assets and w = 4.

Figure 24: The p̃s (left) and p̃b (right) for reverse annealing where ei = e1 for each problem,
s = [0.1→ 0.9], and tp = [15µs→ 800µs] for problem size 20 with 5 assets and 4 slices.

114



Figure 25: The p̃s (left) and p̃b (right) for reverse annealing where ei = ef for each problem,
s = [0.1 → 0.9], and tp = [15 µs → 800 µs] for problem size 20 with 5 assets and 4 slices.
The 6 problems where ef = eg were excluded. Thus, p̃s = p(ee → e0).
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Figure 26: The p̃s as a function of n over a set of 100 problems each with 1000 samples.
Reverse annealing (blue) with ei = ef , s = .7, and tp = 400µs is compared to forward
annealing (orange) with clique embedding, g = 0, and annealing time = 100 µs. The
combination of forward annealing and reverse annealing is also compared where the p̃s is
chosen by problem (green). In this green trend, the p̃s is calculated using the forward

annealing p̃
(k)
s for the 6 problems where forward annealing would have provided reverse

annealing with an ei = e0 and the reverse annealing p̃
(k)
s for the 94 problems where ei 6= e0.

Figure 27: A probability histogram (20 bins) comparing all energies found with forward
annealing and reverse annealing from all 1000 samples for the 94 problems where (ei 6= e0)
with problem size 20 (5 assets and 4 slices).
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Figure 28: The p̃s over 1000 problems each with 1000 samples where k is varied. The
comparison is between a set of problems from problem sizes 8 to 20. The post-processing
method used is majority vote.

Figure 29: The p̃s over 1000 problems each with 1000 samples where k = [0 → −2].
The comparison is between a set of problems from problem size n. The post-processing
method used is our custom weighted random technique incorporating the probabilities of
faulty qubits.
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