11 research outputs found

    SplitCommit: Implementing and Analyzing Homomorphic UC Commitments

    Get PDF
    In this paper we present SplitCommit, a portable and efficient C++ implementation of the recent additively homomorphic commmitment scheme of Frederiksen et al. [FJNT16]. We describe numerous optimizations that go into engineering such an implementation, including highly optimized general purpose bit-matrix transposition and efficient ECC encoding given the associated generator matrix. We also survey and analyze in detail the applicability of [FJNT16] and include a detailed comparison to the canonical (non-homomorphic) commitment scheme based on a Random Oracle. We include performance benchmarks of the implementation in various network setting, for instance on a 10 Gbps LAN we achieve amortized commitment and decommitment running times of 0.65μs0.65\mu s and 0.27μs0.27\mu s, respectively. Finally we also include an extensive tutorial on how to use the library

    Actively Secure OT-Extension from <i>q</i>-ary Linear Codes

    Get PDF

    A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM

    Get PDF
    Oblivious Transfer (OT) is a fundamental cryptographic protocol that finds a number of applications, in particular, as an essential building block for two-party and multi-party computation. We construct a round-optimal (2 rounds) universally composable (UC) protocol for oblivious transfer secure against active adaptive adversaries from any OW-CPA secure public-key encryption scheme with certain properties in the random oracle model (ROM). In terms of computation, our protocol only requires the generation of a public/secret-key pair, two encryption operations and one decryption operation, apart from a few calls to the random oracle. In~terms of communication, our protocol only requires the transfer of one public-key, two ciphertexts, and three binary strings of roughly the same size as the message. Next, we show how to instantiate our construction under the low noise LPN, McEliece, QC-MDPC, LWE, and CDH assumptions. Our instantiations based on the low noise LPN, McEliece, and QC-MDPC assumptions are the first UC-secure OT protocols based on coding assumptions to achieve: 1) adaptive security, 2) optimal round complexity, 3) low communication and computational complexities. Previous results in this setting only achieved static security and used costly cut-and-choose techniques.Our instantiation based on CDH achieves adaptive security at the small cost of communicating only two more group elements as compared to the gap-DH based Simplest OT protocol of Chou and Orlandi (Latincrypt 15), which only achieves static security in the ROM

    Actively Secure OT-Extension from q-ary Linear Codes

    Get PDF
    We consider recent constructions of 11-out-of-NN OT-extension from Kolesnikov and Kumaresan (CRYPTO 2013) and from Orrú et al. (CT-RSA 2017), based on binary error-correcting codes. We generalize their constructions such that qq-ary codes can be used for any prime power qq. This allows to reduce the number of base 11-out-of-22 OT\u27s that are needed to instantiate the construction for any value of NN, at the cost of increasing the complexity of the remaining part of the protocol. We analyze these trade-offs in some concrete cases

    Improving Practical UC-Secure Commitments based on the DDH Assumption

    Get PDF
    At Eurocrypt 2011, Lindell presented practical static and adaptively UC-secure commitment schemes based on the DDH assumption. Later, Blazy {\etal} (at ACNS 2013) improved the efficiency of the Lindell\u27s commitment schemes. In this paper, we present static and adaptively UC-secure commitment schemes based on the same assumption and further improve the communication and computational complexity, as well as the size of the common reference string

    On squares of cyclic codes

    Get PDF
    The square C2C^{*2} of a linear error correcting code CC is the linear code spanned by the component-wise products of every pair of (non-necessarily distinct) words in CC. Squares of codes have gained attention for several applications mainly in the area of cryptography, and typically in those applications one is concerned about some of the parameters (dimension, minimum distance) of both C2C^{*2} and CC. In this paper, motivated mostly by the study of this problem in the case of linear codes defined over the binary field, squares of cyclic codes are considered. General results on the minimum distance of the squares of cyclic codes are obtained and constructions of cyclic codes CC with relatively large dimension of CC and minimum distance of the square C2C^{*2} are discussed. In some cases, the constructions lead to codes CC such that both CC and C2C^{*2} simultaneously have the largest possible minimum distances for their length and dimensions.Comment: Accepted at IEEE Transactions on Information Theory. IEEE early access version available at https://ieeexplore.ieee.org/document/8451926

    Additively Homomorphic UC Commitments with Optimal Amortized Overhead

    No full text
    Abstract. We propose the first UC secure commitment scheme with (amortized) computational complexity linear in the size of the string committed to. After a preprocessing phase based on oblivious transfer, that only needs to be done once and for all, our scheme only requires a pseudorandom generator and a linear code with efficient encoding. We also construct an additively homomorphic version of our basic scheme using VSS. Furthermore we evaluate the concrete efficiency of our schemes and show that the amortized computational overhead is significantly lower than in the previous best constructions. In fact, our basic scheme has amortised concrete efficiency comparable with previous protocols in the Random Oracle Model even though it is constructed in the plain model.

    Efficient UC Commitment Extension with Homomorphism for Free (and Applications)

    Get PDF
    Homomorphic universally composable (UC) commitments allow for the sender to reveal the result of additions and multiplications of values contained in commitments without revealing the values themselves while assuring the receiver of the correctness of such computation on committed values. In this work, we construct essentially optimal additively homomorphic UC commitments from any (not necessarily UC or homomorphic) extractable commitment. We obtain amortized linear computational complexity in the length of the input messages and rate 1. Next, we show how to extend our scheme to also obtain multiplicative homomorphism at the cost of asymptotic optimality but retaining low concrete complexity for practical parameters. While the previously best constructions use UC oblivious transfer as the main building block, our constructions only require extractable commitments and PRGs, achieving better concrete efficiency and offering new insights into the sufficient conditions for obtaining homomorphic UC commitments. Moreover, our techniques yield public coin protocols, which are compatible with the Fiat-Shamir heuristic. These results come at the cost of realizing a restricted version of the homomorphic commitment functionality where the sender is allowed to perform any number of commitments and operations on committed messages but is only allowed to perform a single batch opening of a number of commitments. Although this functionality seems restrictive, we show that it can be used as a building block for more efficient instantiations of recent protocols for secure multiparty computation and zero knowledge non-interactive arguments of knowledge

    On the Power of Secure Two-Party Computation

    Get PDF
    Ishai, Kushilevitz, Ostrovsky and Sahai (STOC 2007, SIAM JoC 2009) introduced the powerful ``MPC-in-the-head\u27\u27 technique that provided a general transformation of information-theoretic MPC protocols secure against passive adversaries to a ZK proof in a ``black-box\u27\u27 way. In this work, we extend this technique and provide a generic transformation of any semi-honest secure two-party computation (2PC) protocol (with mild adaptive security guarantees) in the so called oblivious-transfer hybrid model to an adaptive ZK proof for any NP language, in a ``black-box\u27\u27 way assuming only one-way functions. Our basic construction based on Goldreich-Micali-Wigderson\u27s 2PC protocol yields an adaptive ZK proof with communication complexity proportional to quadratic in the size of the circuit implementing the NP relation. Previously such proofs relied on an expensive Karp reduction of the NP language to Graph Hamiltonicity (Lindell and Zarosim (TCC 2009, Journal of Cryptology 2011)). As an application of our techniques, we show how to obtain a ZK proof with an ``input-delayed\u27\u27 property for any NP language without relying on expensive Karp reductions that is black-box in the underlying one-way function. Namely, the input delayed property allows the honest prover\u27s algorithm to receive the actual statement to be proved only in the final round. We further generalize this to obtain a ``commit and prove\u27\u27 protocol with the same property where the prover commits to a witness w in the second message and proves a statement x regarding the witness w in zero-knowledge where the statement is determined only in the last round. This improves a previous construction of Lapidot and Shamir (Crypto 1990) that was designed specifically for the Graph Hamiltonicity problem and relied on the underlying primitives in a non-black-box way. Additionally, we provide a general transformation to construct a randomized encoding of a function f from any 2PC protocol that securely computes a related functionality (in a black-box way) from one-way functions. We show that if the 2PC protocol has mild adaptive security guarantees (which are satisfied by both the Yao\u27s and GMW\u27s protocol) then the resulting randomized encoding (RE) can be decomposed to an offline/online encoding

    Quantum Codes and Multiparty Computation:A Coding Theoretic Approach

    Get PDF
    corecore