67,152 research outputs found

    Logarithmic Corrections and Finite-Size Scaling in the Two-Dimensional 4-State Potts Model

    Get PDF
    We analyze the scaling and finite-size-scaling behavior of the two-dimensional 4-state Potts model. We find new multiplicative logarithmic corrections for the susceptibility, in addition to the already known ones for the specific heat. We also find additive logarithmic corrections to scaling, some of which are universal. We have checked the theoretical predictions at criticality and off criticality by means of high-precision Monte Carlo data.Comment: 46 pages including 8 figures. Self-unpacking file containing the tex file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and eqsection.sty) and the 8 ps file

    Cluster algorithm for non-additive hard-core mixtures

    Full text link
    In this paper, we present a cluster algorithm for the numerical simulations of non-additive hard-core mixtures. This algorithm allows one to simulate and equilibrate systems with a number of particles two orders of magnitude larger than previous simulations. The phase separation for symmetric binary mixtures is studied for different non-additvities as well as for the Widom-Rowlinson model (B. Widom and J. S. Rowlinson, J. Chem. Phys. 52, 1670 (1970)) in two and three dimensions. The critical densities are determined from finite size scaling. The critical exponents for all the non-additivities are consistent with the Ising universality class.Comment: 11 pages and 9 figures, to be published in J. Chem. Phys. Minor corrections and some references adde

    Adiabatic quantum algorithm for search engine ranking

    Full text link
    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of webpages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top ranked log(n)\log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speedup. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.Comment: 7 pages, 5 figures; closer to published versio

    Improved Distributed Algorithms for Exact Shortest Paths

    Full text link
    Computing shortest paths is one of the central problems in the theory of distributed computing. For the last few years, substantial progress has been made on the approximate single source shortest paths problem, culminating in an algorithm of Becker et al. [DISC'17] which deterministically computes (1+o(1))(1+o(1))-approximate shortest paths in O~(D+n)\tilde O(D+\sqrt n) time, where DD is the hop-diameter of the graph. Up to logarithmic factors, this time complexity is optimal, matching the lower bound of Elkin [STOC'04]. The question of exact shortest paths however saw no algorithmic progress for decades, until the recent breakthrough of Elkin [STOC'17], which established a sublinear-time algorithm for exact single source shortest paths on undirected graphs. Shortly after, Huang et al. [FOCS'17] provided improved algorithms for exact all pairs shortest paths problem on directed graphs. In this paper, we present a new single-source shortest path algorithm with complexity O~(n3/4D1/4)\tilde O(n^{3/4}D^{1/4}). For polylogarithmic DD, this improves on Elkin's O~(n5/6)\tilde{O}(n^{5/6}) bound and gets closer to the Ω~(n1/2)\tilde{\Omega}(n^{1/2}) lower bound of Elkin [STOC'04]. For larger values of DD, we present an improved variant of our algorithm which achieves complexity O~(n3/4+o(1)+min{n3/4D1/6,n6/7}+D)\tilde{O}\left( n^{3/4+o(1)}+ \min\{ n^{3/4}D^{1/6},n^{6/7}\}+D\right), and thus compares favorably with Elkin's bound of O~(n5/6+n2/3D1/3+D)\tilde{O}(n^{5/6} + n^{2/3}D^{1/3} + D ) in essentially the entire range of parameters. This algorithm provides also a qualitative improvement, because it works for the more challenging case of directed graphs (i.e., graphs where the two directions of an edge can have different weights), constituting the first sublinear-time algorithm for directed graphs. Our algorithm also extends to the case of exact κ\kappa-source shortest paths...Comment: 26 page
    corecore