19 research outputs found

    On Polynomial Kernelization of H-free Edge Deletion

    Get PDF
    For a set H of graphs, the H-free Edge Deletion problem is to decide whether there exist at most k edges in the input graph, for some k∈N, whose deletion results in a graph without an induced copy of any of the graphs in H . The problem is known to be fixed-parameter tractable if H is of finite cardinality. In this paper, we present a polynomial kernel for this problem for any fixed finite set H of connected graphs for the case where the input graphs are of bounded degree. We use a single kernelization rule which deletes vertices ‘far away’ from the induced copies of every H∈H in the input graph. With a slightly modified kernelization rule, we obtain polynomial kernels for H-free Edge Deletion under the following three settings

    Editing to a Graph of Given Degrees

    Full text link
    We consider the Editing to a Graph of Given Degrees problem that asks for a graph G, non-negative integers d,k and a function \delta:V(G)->{1,...,d}, whether it is possible to obtain a graph G' from G such that the degree of v is \delta(v) for any vertex v by at most k vertex or edge deletions or edge additions. We construct an FPT-algorithm for Editing to a Graph of Given Degrees parameterized by d+k. We complement this result by showing that the problem has no polynomial kernel unless NP\subseteq coNP/poly

    On Polynomial Kernelization of H\mathcal{H}-free Edge Deletion

    Full text link
    For a set of graphs H\mathcal{H}, the \textsc{H\mathcal{H}-free Edge Deletion} problem asks to find whether there exist at most kk edges in the input graph whose deletion results in a graph without any induced copy of HHH\in\mathcal{H}. In \cite{cai1996fixed}, it is shown that the problem is fixed-parameter tractable if H\mathcal{H} is of finite cardinality. However, it is proved in \cite{cai2013incompressibility} that if H\mathcal{H} is a singleton set containing HH, for a large class of HH, there exists no polynomial kernel unless coNPNP/polycoNP\subseteq NP/poly. In this paper, we present a polynomial kernel for this problem for any fixed finite set H\mathcal{H} of connected graphs and when the input graphs are of bounded degree. We note that there are \textsc{H\mathcal{H}-free Edge Deletion} problems which remain NP-complete even for the bounded degree input graphs, for example \textsc{Triangle-free Edge Deletion}\cite{brugmann2009generating} and \textsc{Custer Edge Deletion(P3P_3-free Edge Deletion)}\cite{komusiewicz2011alternative}. When H\mathcal{H} contains K1,sK_{1,s}, we obtain a stronger result - a polynomial kernel for KtK_t-free input graphs (for any fixed t>2t> 2). We note that for s>9s>9, there is an incompressibility result for \textsc{K1,sK_{1,s}-free Edge Deletion} for general graphs \cite{cai2012polynomial}. Our result provides first polynomial kernels for \textsc{Claw-free Edge Deletion} and \textsc{Line Edge Deletion} for KtK_t-free input graphs which are NP-complete even for K4K_4-free graphs\cite{yannakakis1981edge} and were raised as open problems in \cite{cai2013incompressibility,open2013worker}.Comment: 12 pages. IPEC 2014 accepted pape

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat
    corecore