496 research outputs found

    EleAtt-RNN: Adding Attentiveness to Neurons in Recurrent Neural Networks

    Full text link
    Recurrent neural networks (RNNs) are capable of modeling temporal dependencies of complex sequential data. In general, current available structures of RNNs tend to concentrate on controlling the contributions of current and previous information. However, the exploration of different importance levels of different elements within an input vector is always ignored. We propose a simple yet effective Element-wise-Attention Gate (EleAttG), which can be easily added to an RNN block (e.g. all RNN neurons in an RNN layer), to empower the RNN neurons to have attentiveness capability. For an RNN block, an EleAttG is used for adaptively modulating the input by assigning different levels of importance, i.e., attention, to each element/dimension of the input. We refer to an RNN block equipped with an EleAttG as an EleAtt-RNN block. Instead of modulating the input as a whole, the EleAttG modulates the input at fine granularity, i.e., element-wise, and the modulation is content adaptive. The proposed EleAttG, as an additional fundamental unit, is general and can be applied to any RNN structures, e.g., standard RNN, Long Short-Term Memory (LSTM), or Gated Recurrent Unit (GRU). We demonstrate the effectiveness of the proposed EleAtt-RNN by applying it to different tasks including the action recognition, from both skeleton-based data and RGB videos, gesture recognition, and sequential MNIST classification. Experiments show that adding attentiveness through EleAttGs to RNN blocks significantly improves the power of RNNs.Comment: IEEE Transactions on Image Processing (Accept). arXiv admin note: substantial text overlap with arXiv:1807.0444

    LSTA: Long Short-Term Attention for Egocentric Action Recognition

    Get PDF
    Egocentric activity recognition is one of the most challenging tasks in video analysis. It requires a fine-grained discrimination of small objects and their manipulation. While some methods base on strong supervision and attention mechanisms, they are either annotation consuming or do not take spatio-temporal patterns into account. In this paper we propose LSTA as a mechanism to focus on features from spatial relevant parts while attention is being tracked smoothly across the video sequence. We demonstrate the effectiveness of LSTA on egocentric activity recognition with an end-to-end trainable two-stream architecture, achieving state of the art performance on four standard benchmarks.Comment: Accepted to CVPR 201

    LSTA: Long Short-Term Attention for Egocentric Action Recognition

    Get PDF
    Egocentric activity recognition is one of the most challenging tasks in video analysis. It requires a fine-grained discrimination of small objects and their manipulation. While some methods base on strong supervision and attention mechanisms, they are either annotation consuming or do not take spatio-temporal patterns into account. In this paper we propose LSTA as a mechanism to focus on features from spatial relevant parts while attention is being tracked smoothly across the video sequence. We demonstrate the effectiveness of LSTA on egocentric activity recognition with an end-to-end trainable two-stream architecture, achieving state-of-the-art performance on four standard benchmarks

    Deep Learning Development Environment in Virtual Reality

    Full text link
    Virtual reality (VR) offers immersive visualization and intuitive interaction. We leverage VR to enable any biomedical professional to deploy a deep learning (DL) model for image classification. While DL models can be powerful tools for data analysis, they are also challenging to understand and develop. To make deep learning more accessible and intuitive, we have built a virtual reality-based DL development environment. Within our environment, the user can move tangible objects to construct a neural network only using their hands. Our software automatically translates these configurations into a trainable model and then reports its resulting accuracy on a test dataset in real-time. Furthermore, we have enriched the virtual objects with visualizations of the model's components such that users can achieve insight about the DL models that they are developing. With this approach, we bridge the gap between professionals in different fields of expertise while offering a novel perspective for model analysis and data interaction. We further suggest that techniques of development and visualization in deep learning can benefit by integrating virtual reality
    • …
    corecore