28 research outputs found

    Minimally-Supervised Morphological Segmentation using Adaptor Grammars

    Get PDF
    This paper explores the use of Adaptor Grammars, a nonparametric Bayesian modelling framework, for minimally supervised morphological segmentation. We compare three training methods: unsupervised training, semi-supervised training, and a novel model selection method. In the model selection method, we train unsupervised Adaptor Grammars using an over-articulated metagrammar, then use a small labelled data set to select which potential morph boundaries identified by the metagrammar should be returned in the final output. We evaluate on five languages and show that semi-supervised training provides a boost over unsupervised training, while the model selection method yields the best average results over all languages and is competitive with state-of-the-art semi-supervised systems. Moreover, this method provides the potential to tune performance according to different evaluation metrics or downstream tasks.12 page(s

    Probabilistic Modelling of Morphologically Rich Languages

    Full text link
    This thesis investigates how the sub-structure of words can be accounted for in probabilistic models of language. Such models play an important role in natural language processing tasks such as translation or speech recognition, but often rely on the simplistic assumption that words are opaque symbols. This assumption does not fit morphologically complex language well, where words can have rich internal structure and sub-word elements are shared across distinct word forms. Our approach is to encode basic notions of morphology into the assumptions of three different types of language models, with the intention that leveraging shared sub-word structure can improve model performance and help overcome data sparsity that arises from morphological processes. In the context of n-gram language modelling, we formulate a new Bayesian model that relies on the decomposition of compound words to attain better smoothing, and we develop a new distributed language model that learns vector representations of morphemes and leverages them to link together morphologically related words. In both cases, we show that accounting for word sub-structure improves the models' intrinsic performance and provides benefits when applied to other tasks, including machine translation. We then shift the focus beyond the modelling of word sequences and consider models that automatically learn what the sub-word elements of a given language are, given an unannotated list of words. We formulate a novel model that can learn discontiguous morphemes in addition to the more conventional contiguous morphemes that most previous models are limited to. This approach is demonstrated on Semitic languages, and we find that modelling discontiguous sub-word structures leads to improvements in the task of segmenting words into their contiguous morphemes.Comment: DPhil thesis, University of Oxford, submitted and accepted 2014. http://ora.ox.ac.uk/objects/uuid:8df7324f-d3b8-47a1-8b0b-3a6feb5f45c

    MORSE: Semantic-ally Drive-n MORpheme SEgment-er

    Full text link
    We present in this paper a novel framework for morpheme segmentation which uses the morpho-syntactic regularities preserved by word representations, in addition to orthographic features, to segment words into morphemes. This framework is the first to consider vocabulary-wide syntactico-semantic information for this task. We also analyze the deficiencies of available benchmarking datasets and introduce our own dataset that was created on the basis of compositionality. We validate our algorithm across datasets and present state-of-the-art results

    Adaptor Grammars for Unsupervised Paradigm Clustering

    Get PDF
    This work describes the Edinburgh submission to the SIGMORPHON 2021 Shared Task 2 on unsupervised morphological paradigm clustering. Given raw text input, the task was to assign each token to a cluster with other tokens from the same paradigm. We use Adaptor Grammar segmentations combined with frequency-based heuristics to predict paradigm clusters. Our system achieved the highest average F1 score across 9 test languages, placing first out of 15 submissions

    Producing power-law distributions and damping word frequencies with two-stage language models

    Get PDF
    Standard statistical models of language fail to capture one of the most striking properties of natural languages: the power-law distribution in the frequencies of word tokens. We present a framework for developing statisticalmodels that can generically produce power laws, breaking generativemodels into two stages. The first stage, the generator, can be any standard probabilistic model, while the second stage, the adaptor, transforms the word frequencies of this model to provide a closer match to natural language. We show that two commonly used Bayesian models, the Dirichlet-multinomial model and the Dirichlet process, can be viewed as special cases of our framework. We discuss two stochastic processes-the Chinese restaurant process and its two-parameter generalization based on the Pitman-Yor process-that can be used as adaptors in our framework to produce power-law distributions over word frequencies. We show that these adaptors justify common estimation procedures based on logarithmic or inverse-power transformations of empirical frequencies. In addition, taking the Pitman-Yor Chinese restaurant process as an adaptor justifies the appearance of type frequencies in formal analyses of natural language and improves the performance of a model for unsupervised learning of morphology.48 page(s

    Morphological analysis for the Maltese language : the challenges of a hybrid system

    Get PDF
    Maltese is a morphologically rich language with a hybrid morphological system which features both concatenative and non-concatenative processes. This paper analyses the impact of this hybridity on the performance of machine learning techniques for morphological labelling and clustering. In particular, we analyse a dataset of morphologically related word clusters to evaluate the difference in results for concatenative and non-concatenative clusters. We also describe research carried out in morphological labelling, with a particular focus on the verb category. Two evaluations were carried out, one using an unseen dataset, and another one using a gold standard dataset which was manually labelled. The gold standard dataset was split into concatenative and non-concatenative to analyse the difference in results between the two morphological systems.non peer-reviewe

    Morphological analysis for the Maltese language : the challenges of a hybrid system

    Get PDF
    Maltese is a morphologically rich language with a hybrid morphological system which features both concatenative and non-concatenative processes. This paper analyses the impact of this hybridity on the performance of machine learning techniques for morphological labelling and clustering. In particular, we analyse a dataset of morphologically related word clusters to evaluate the difference in results for concatenative and non-concatenative clusters. We also describe research carried out in morphological labelling, with a particular focus on the verb category. Two evaluations were carried out, one using an unseen dataset, and another one using a gold standard dataset which was manually labelled. The gold standard dataset was split into concatenative and non-concatenative to analyse the difference in results between the two morphological systems.peer-reviewe
    corecore