2,327 research outputs found

    Private Model Compression via Knowledge Distillation

    Full text link
    The soaring demand for intelligent mobile applications calls for deploying powerful deep neural networks (DNNs) on mobile devices. However, the outstanding performance of DNNs notoriously relies on increasingly complex models, which in turn is associated with an increase in computational expense far surpassing mobile devices' capacity. What is worse, app service providers need to collect and utilize a large volume of users' data, which contain sensitive information, to build the sophisticated DNN models. Directly deploying these models on public mobile devices presents prohibitive privacy risk. To benefit from the on-device deep learning without the capacity and privacy concerns, we design a private model compression framework RONA. Following the knowledge distillation paradigm, we jointly use hint learning, distillation learning, and self learning to train a compact and fast neural network. The knowledge distilled from the cumbersome model is adaptively bounded and carefully perturbed to enforce differential privacy. We further propose an elegant query sample selection method to reduce the number of queries and control the privacy loss. A series of empirical evaluations as well as the implementation on an Android mobile device show that RONA can not only compress cumbersome models efficiently but also provide a strong privacy guarantee. For example, on SVHN, when a meaningful (9.83,10−6)(9.83,10^{-6})-differential privacy is guaranteed, the compact model trained by RONA can obtain 20×\times compression ratio and 19×\times speed-up with merely 0.97% accuracy loss.Comment: Conference version accepted by AAAI'1

    Privacy-Friendly Mobility Analytics using Aggregate Location Data

    Get PDF
    Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates -- i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.Comment: Published at ACM SIGSPATIAL 201

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples
    • …
    corecore