284 research outputs found

    Adaptive-resolution octree-based volumetric SLAM

    Get PDF
    We introduce a novel volumetric SLAM pipeline for the integration and rendering of depth images at an adaptive level of detail. Our core contribution is a fusion algorithm which dynamically selects the appropriate integration scale based on the effective sensor resolution given the distance from the observed scene, addressing aliasing issues, reconstruction quality, and efficiency simultaneously. We implement our approach using an efficient octree structure which supports multi-resolution rendering allowing for online frame-to-model alignment. Our qualitative and quantitative experiments demonstrate significantly improved reconstruction quality and up to six-fold execution time speed-ups compared to single resolution grids

    Sparse octree algorithms for scalable dense volumetric tracking and mapping

    Get PDF
    This thesis is concerned with the problem of Simultaneous Localisation and Mapping (SLAM), the task of localising an agent within an unknown environment and at the same time building a representation of it. In particular, we tackle the fundamental scalability limitations of dense volumetric SLAM systems. We do so by proposing a highly efficient hierarchical data-structure based on octrees together with a set of algorithms to support the most compute-intensive operations in typical volumetric reconstruction pipelines. We employ our hierarchical representation in a novel dense pipeline based on occupancy probabilities. Crucially, the complete space representation encoded by the octree enables to demonstrate a fully integrated system in which tracking, mapping and occupancy queries can be performed seamlessly on a single coherent representation. While achieving accuracy either at par or better than the current state-of-the-art, we demonstrate run-time performance of at least an order of magnitude better than currently available hierarchical data-structures. Finally, we introduce a novel multi-scale reconstruction system that exploits our octree hierarchy. By adaptively selecting the appropriate scale to match the effective sensor resolution in both integration and rendering, we demonstrate better reconstruction results and tracking accuracy compared to single-resolution grids. Furthermore, we achieve much higher computational performance by propagating information up and down the tree in a lazy fashion, which allow us to reduce the computational load when updating distant surfaces. We have released our software as an open-source library, named supereight, which is freely available for the benefit of the wider community. One of the main advantages of our library is its flexibility. By carefully providing a set of algorithmic abstractions, supereight enables SLAM practitioners to freely experiment with different map representations with no intervention on the back-end library code and crucially, preserving performance. Our work has been adopted by robotics researchers in both academia and industry.Open Acces

    OctNetFusion: Learning Depth Fusion from Data

    Full text link
    In this paper, we present a learning based approach to depth fusion, i.e., dense 3D reconstruction from multiple depth images. The most common approach to depth fusion is based on averaging truncated signed distance functions, which was originally proposed by Curless and Levoy in 1996. While this method is simple and provides great results, it is not able to reconstruct (partially) occluded surfaces and requires a large number frames to filter out sensor noise and outliers. Motivated by the availability of large 3D model repositories and recent advances in deep learning, we present a novel 3D CNN architecture that learns to predict an implicit surface representation from the input depth maps. Our learning based method significantly outperforms the traditional volumetric fusion approach in terms of noise reduction and outlier suppression. By learning the structure of real world 3D objects and scenes, our approach is further able to reconstruct occluded regions and to fill in gaps in the reconstruction. We demonstrate that our learning based approach outperforms both vanilla TSDF fusion as well as TV-L1 fusion on the task of volumetric fusion. Further, we demonstrate state-of-the-art 3D shape completion results.Comment: 3DV 2017, https://github.com/griegler/octnetfusio

    Elastic and efficient LiDAR reconstruction for large-scale exploration tasks

    Get PDF
    We present an efficient, elastic 3D LiDAR reconstruction framework which can reconstruct up to maximum LiDAR ranges (60 m) at multiple frames per second, thus enabling robot exploration in large-scale environments. Our approach only requires a CPU. We focus on three main challenges of large-scale reconstruction: integration of long-range LiDAR scans at high frequency, the capacity to deform the reconstruction after loop closures are detected, and scalability for long-duration exploration. Our system extends upon a state-of-the-art efficient RGB-D volumetric reconstruction technique, called supereight, to support LiDAR scans and a newly developed submapping technique to allow for dynamic correction of the 3D reconstruction. We then introduce a novel pose graph sparsification and submap fusion feature to make our system more scalable for large environments. We evaluate the performance using a published dataset captured by a handheld mapping device scanning a set of buildings, and with a mobile robot exploring an underground room network. Experimental results demonstrate that our system can reconstruct at 3 Hz with 60 m sensor range and ~5 cm resolution, while state-of-the-art approaches can only reconstruct to 25 cm resolution or 20 m range at the same frequency

    SurfelMeshing: Online Surfel-Based Mesh Reconstruction

    Full text link
    We address the problem of mesh reconstruction from live RGB-D video, assuming a calibrated camera and poses provided externally (e.g., by a SLAM system). In contrast to most existing approaches, we do not fuse depth measurements in a volume but in a dense surfel cloud. We asynchronously (re)triangulate the smoothed surfels to reconstruct a surface mesh. This novel approach enables to maintain a dense surface representation of the scene during SLAM which can quickly adapt to loop closures. This is possible by deforming the surfel cloud and asynchronously remeshing the surface where necessary. The surfel-based representation also naturally supports strongly varying scan resolution. In particular, it reconstructs colors at the input camera's resolution. Moreover, in contrast to many volumetric approaches, ours can reconstruct thin objects since objects do not need to enclose a volume. We demonstrate our approach in a number of experiments, showing that it produces reconstructions that are competitive with the state-of-the-art, and we discuss its advantages and limitations. The algorithm (excluding loop closure functionality) is available as open source at https://github.com/puzzlepaint/surfelmeshing .Comment: Version accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    H2-Mapping: Real-time Dense Mapping Using Hierarchical Hybrid Representation

    Full text link
    Constructing a high-quality dense map in real-time is essential for robotics, AR/VR, and digital twins applications. As Neural Radiance Field (NeRF) greatly improves the mapping performance, in this paper, we propose a NeRF-based mapping method that enables higher-quality reconstruction and real-time capability even on edge computers. Specifically, we propose a novel hierarchical hybrid representation that leverages implicit multiresolution hash encoding aided by explicit octree SDF priors, describing the scene at different levels of detail. This representation allows for fast scene geometry initialization and makes scene geometry easier to learn. Besides, we present a coverage-maximizing keyframe selection strategy to address the forgetting issue and enhance mapping quality, particularly in marginal areas. To the best of our knowledge, our method is the first to achieve high-quality NeRF-based mapping on edge computers of handheld devices and quadrotors in real-time. Experiments demonstrate that our method outperforms existing NeRF-based mapping methods in geometry accuracy, texture realism, and time consumption. The code will be released at: https://github.com/SYSU-STAR/H2-MappingComment: Accepted by IEEE Robotics and Automation Letter

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Multi-resolution mapping and planning for UAV navigation in attitude constrained environments

    Get PDF
    In this thesis we aim to bridge the gap between high quality map reconstruction and Unmanned Aerial Vehicles (UAVs) SE(3) motion planning in challenging environments with narrow openings, such as disaster areas, which requires attitude to be considered. We propose an efficient system that leverages the concept of adaptive-resolution volumetric mapping, which naturally integrates with the hierarchical decomposition of space in an octree data structure. Instead of a Truncated Signed Distance Function (TSDF), we adopt mapping of occupancy probabilities in log-odds representation, which allows representation of both surfaces, as well as the entire free, i.e.\ observed space, as opposed to unobserved space. We introduce a method for choosing resolution -on the fly- in real-time by means of a multi-scale max-min pooling of the input depth image. The notion of explicit free space mapping paired with the spatial hierarchy in the data structure, as well as map resolution, allows for collision queries, as needed for robot motion planning, at unprecedented speed. Our mapping strategy supports pinhole cameras as well as spherical sensor models. Additionally, we introduce a first-of-a-kind global minimum cost path search method based on A* that considers attitude along the path. State-of-the-art methods incorporate attitude only in the refinement stage. To make the problem tractable, our method exploits an adaptive and coarse-to-fine approach using global and local A* runs, plus an efficient method to introduce the UAV attitude in the process. We integrate our method with an SE(3) trajectory optimisation method based on a safe-flight-corridor, yielding a complete path planning pipeline. We quantitatively evaluate our mapping strategy in terms of mapping accuracy, memory, runtime performance, and planning performance showing improvements over the state-of-the-art, particularly in cases requiring high resolution maps. Furthermore, extensive evaluation is undertaken using the AirSim flight simulator under closed loop control in a set of randomised maps, allowing us to quantitatively assess our path initialisation method. We show that it achieves significantly higher success rates than the baselines, at a reduced computational burden.Open Acces

    Efficient volumetric mapping of multi-scale environments using wavelet-based compression

    Full text link
    Volumetric maps are widely used in robotics due to their desirable properties in applications such as path planning, exploration, and manipulation. Constant advances in mapping technologies are needed to keep up with the improvements in sensor technology, generating increasingly vast amounts of precise measurements. Handling this data in a computationally and memory-efficient manner is paramount to representing the environment at the desired scales and resolutions. In this work, we express the desirable properties of a volumetric mapping framework through the lens of multi-resolution analysis. This shows that wavelets are a natural foundation for hierarchical and multi-resolution volumetric mapping. Based on this insight we design an efficient mapping system that uses wavelet decomposition. The efficiency of the system enables the use of uncertainty-aware sensor models, improving the quality of the maps. Experiments on both synthetic and real-world data provide mapping accuracy and runtime performance comparisons with state-of-the-art methods on both RGB-D and 3D LiDAR data. The framework is open-sourced to allow the robotics community at large to explore this approach.Comment: 11 pages, 6 figures, 2 tables, accepted to RSS 2023, code is open-source: https://github.com/ethz-asl/wavema
    • …
    corecore