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ACEFusion - Accelerated and Energy-Efficient Semantic 3D
Reconstruction of Dynamic Scenes

Mihai Bujanca, Barry Lennox, and Mikel Luján

Abstract— ACEFusion is the first 3D reconstruction system
able to capture the geometry and semantics of dynamic scenes
using an RGB-D camera in real-time on a robotic computing
platform. Harnessing the hardware accelerators of an Nvidia
Jetson AGX Xavier, the system uses heterogeneous computing
to achieve 30 FPS under a 30W power budget. Using a data-
parallel design, we perform most image computation on the
dedicated hardware accelerators, freeing the general purpose
cores and GPU to process 3D geometry. To further increase
efficiency, we employ a hybrid geometry representation with
octrees for static-semantic reconstruction and surfels for dy-
namic reconstruction. ACEFusion achieves competitive results
on standard benchmarks while efficiently performing a more
complex overall task than existing SLAM techniques. Figure. 1
shows the output of our system on a dynamic sequence.

I. INTRODUCTION

Humans and animals construct cognitive maps, complex
and meaningful internal representations of the world, to
achieve their goals. Developing computer systems which
allow robots to construct such representations is not only
essential for autonomy, but also in enabling interaction
between humans and AI systems.

Simultaneous Localization and Mapping (SLAM) captures
for robotics the problem of building such maps of the
environment. Given a mobile robot placed in an unknown en-
vironment at an unknown location, a SLAM system aims to
simultaneously create a map of the environment and localize
the robot within the map. Advancements in sensors, machine
learning, and computing capabilities have led SLAM beyond
its initial scope, with mapping capabilities extending to cap-
turing the 3D geometry of static and dynamic environments
as well as their semantic aspects. The notion of Spatial AI
[1] was recently coined to refer to the broader problem of
building rich cognitive maps by extending SLAM beyond a
position tracking problem.

ACEFusion builds significantly more expressive maps than
most Spatial AI systems, describing the geometry and seman-
tics of static and dynamic scene elements. The accuracy of
pose estimation and 3D geometry reconstruction is evaluated
using datasets available in the SLAMBench framework [2],
[3], [4]. To assess robustness [5], we compare the effect of
dynamic objects on ACEFusion against other state-of-the-
art systems. Two central aspects that distinguish ACEFusion
from prior work, and allowing to achieve up to 30FPS on a
30W power budget are the choice of representation and the
parallelization scheme.

Whereas other systems typically use a single representa-
tion, we adopt a surfel-based representation for dynamic ob-
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Fig. 1: Output of the system: 3D reconstruction including hu-
mans and semantically labelled objects - e.g. couch (green),
table (brown).

jects, while the static background is modelled using octrees.
The insight behind this choice is that surfel-based represen-
tations are fit for updating a small, moving object at every
frame, while octrees representing a large and static scene can
efficiently update the visible part of the scene at every frame
and adapt to different levels of granularity as necessary.
While prior art requires powerful GPUs to achieve real-
time performance, ACEFusion distributes the computational
load across the Deep Learning Accelerators (DLA), Video
Image Compositor (VIC), general purpose processing cores,
and GPU available on the Nvidia Jetson Xavier AGX board.
ACEFusion runs image processing and pose estimation in
parallel with 3D reconstruction. Expensive image processing
tasks are offloaded onto accelerators, allowing most of the
cores and GPU processing to be dedicated to static and
dynamic reconstruction, respectively.

Summing up our contributions, this paper presents ACE-
Fusion: an expressive, robust, accurate, and efficient Spatial
AI system with the following features:

1) A hybrid representation using octrees for static-
semantic reconstruction on the CPU and surfels for
dynamic reconstruction on the GPU.

2) An image processing pipeline running in parallel with
the reconstruction tasks on dedicated accelerators, with
results used to enhance downstream tasks.

3) The system runs in real time on an Nvidia Jetson AGX
Xavier.

4) Matching or improving upon state-of-the-art results on
pose estimation in dynamic environments.



Static Dynamic Semantic Representation Low-power Computing hardware Optical flow
KinectFusion [6] x Voxel GPU
ElasticFusion [7] x Surfel GPU

InfiniTAM [8] x Voxel x CPU or GPU
SuperEight [9] x Octree CPU

FlashFusion [10] x Octree CPU
DynamicFusion [11] x Voxel GPU

SurfelWarp [12] x Surfel GPU
SemanticFusion [13] x x Surfel GPU

Kimera [14] x x Mesh CPU
FlowFusion [15] x Voxel GPU x
SplitFusion [16] x x Voxel GPU
FullFusion [17] x x x Voxel GPU

ACEFusion (ours) x x x Octree + Surfels x CPU + GPU + DLA + VIC x

TABLE I: Comparison of state-of-the-art. Only ACEFusion is designed to run on a low-power platform suitable for robotics.

II. RELATED WORK

What should an expressive representation of an environ-
ment contain? Broadly speaking, form and meaning. How-
ever, from a computational point of view, a finer distinction
has to be made, one that accounts for the complexity of the
processes involved in building cognitive maps. We briefly
review prior work on acquiring such representations of the
3D environment in the context of robotics.

3D static geometry – The introduction of low-cost RGB-
D cameras, such as the Microsoft Kinect and greater pro-
cessing power of high-end GPUs, made the first real-time
3D reconstruction methods possible. Since KinectFusion [6],
systems have improved in accuracy, efficiency, and robust-
ness, enabling applications such as augmented reality or
geometry-aware path planning [9]. For static geometry, two
main approaches have been investigated: surfel based [7],
[18], and volumetric [6], [19] (better for large scenes).

Prior art for efficient 3D reconstruction has used voxel
hashing [20], [8], or octrees [21], [22] to reduce the compu-
tational and memory cost. The static reconstruction module
of ACEFusion uses an octree-based representation, building
upon the volumetric fusion methods of supereight [9].

Semantically-labelled geometry – Representing geom-
etry may be sufficient for tasks such as path planning
in a static setting, but seeing the world in terms of un-
differentiated geometry can be severely limiting. Complex
behaviour requires understanding the meaning of geometry;
for instance, grasping a door handle or an object on a table
[23], [24]. ScanComplete [25] uses semantic priors to fill
in missing information in large-scale scenes. Advancements
in deep learning, in particular for object detection, have
facilitated the development of robotic systems with scene
understanding capabilities. Garg et al. [26] presents a recent
large-scale review.

Performing online semantic segmentation along with 3D
reconstruction has been actively studied in the past few years,
and approaches such as SemanticFusion [13] and CNN-
SLAM [27] can reconstruct the geometry and semantics of
static scenes in real time. SceneCode [28] recently introduced
a code-based learned joint representation of scene semantics
and geometry to perform monocular dense semantic recon-
struction. Octree structures are suited for jointly representing

semantics and geometry, and have been used for semantic
mapping of indoor [29] and outdoor [30] scenes.

Dynamic geometry – In a static scene, the change be-
tween consecutive frames can be approximated by a single
linear transformation corresponding to the camera motion.
When objects in the scene move (in particular non-rigidly),
observations are determined by multiple independent causal
factors, introducing non-linearity in the problem of explain-
ing changes in input. As non-linear problems are significantly
more computationally-expensive than linear ones, various
strategies to reduce the computational load have been pro-
posed. Some treat moving objects as outliers and attempt to
find reliable static landmarks [31], [32] or mask out [33],
[34], [35], [15] dynamic elements.

Non-rigidly moving bodies are either agents or objects ac-
tively deformed by agents (e.g. clothing, tools). Since agents
can produce changes when interacting with the environment,
requiring robotic systems to adapt, foregoing the modelling
of non-rigid objects would ignore some of the most important
elements of a scene. ACEFusion performs real-time non-rigid
reconstruction by improving upon SurfelWarp [12].

Static and dynamic geometry – A few recent works com-
bine ideas from the approaches discussed above to capture
scenes as completely as possible. The most similar systems
to our work are SplitFusion [16] and FullFusion [17]. Split-
Fusion uses an instance segmentation neural network to split
the input into rigid and non-rigid frames, then reconstructs
the geometry. FullFusion uses a scene decomposition method
based on semantics and geometry and additionally integrates
semantic information into the scene representation.

Hardware-accelerated AI – A new class of embedded ac-
celerators dedicated to deep learning inference and computer
vision tasks has become available to the robotics community.
The Nvidia Jetson series features Deep Learning Acceler-
ators and Programmable Vision Accelerators. Recent work
demonstrated the use of such accelerators can significantly
speed up object detection [36], while FPGA accelerators
[37] show great potential for energy-efficient SLAM. While
it is common for 3D reconstruction algorithms to employ
GPU acceleration, dedicated System-on-Chip with hardware
accelerators targeted towards efficient image processing have
not been used in parallel with GPU and multi-cores in the
context of 3D reconstruction.



Fig. 2: Overview of our pipeline. The Image processing module pre-processes the input in parallel with the odometry and
reconstruction nodes, preparing a new frame for processing while the reconstruction of the previous frame is being performed.

III. METHOD

A. Overview

A key contribution of the proposed method is the distri-
bution of tasks across the available hardware units. We aim
to finish preprocessing new inputs (in the Image Processing
module), while the more demanding reconstruction tasks
finish processing the previous frames. In addition, we seek
to adopt the most useful principles from prior work while
minimizing superfluous computation.

Our pipeline (Fig. 2) is described by four modules:
1) Image processing: extracts useful information about

the input (optical flow, superpixels, instance segmenta-
tion) and decomposes the scene into static and dynamic
parts.

2) Pose estimation: finds the transformation between the
camera and world frame.

3) Static reconstruction: reconstructs a semantic 3D
model of the scene using a volumetric representation.

4) Dynamic reconstruction: reconstructs 3D models of
dynamic objects using a point-based representation.

B. Low-power hardware platform

Our method is optimised to use the hardware on Nvidia
Jetson platforms for real-time, energy-efficient operation.
The development and testing platform is an Nvidia Jetson
Xavier AGX module running under 64-bit Ubuntu 18.04
OS. The module features an 8-core ARMv8.2 64-bit running
at 2.25GHz, 16 GB of RAM, a 512-core Nvidia Volta
GPU, 2 Deep Learning Accelerators (DLA), double Vision
Accelerator, a Video Image Compositor (VIC) unit and an

Optical Flow Accelerator. Due to limited on-board storage,
the module is equipped with a Samsung 970 EVO Plus
1TB SSD installed via the high-speed M.2 Key-M connector
through which all data is loaded.

C. Hardware-accelerated image processing

The image processing module extracts information that
can be used to improve the accuracy and runtime of down-
stream tasks from the inputs and previous frames. The
most important output computed by the module is a mask
separating the static and dynamic elements of the input. All
operations are performed in image space, taking advantage,
when possible, of dedicated hardware. This creates two
advantages. On one hand, the processing module is acceler-
ated compared to executing the same operations on general-
purpose hardware (processor/GPU). On the other hand, this
frees up the processors and GPU to execute other tasks in
parallel. The input to the pipeline is a pair of registered RGB-
D frames F = {C : Ω 7→ N3,D : Ω 7→ N} and a previously
stored keyframe F kf = {Ckf ,Dkf} with Ω ⊂ N2 the pixel
space.

Semantic segmentation – We propose to use DNN-based
models to compute a semantic segmentation of the inputs
I : Ω 7→ P (L = l) with each pixel encoding a probability
distribution over the set of labels L. Recognized classes
are assigned a priori to static (e.g. table) or dynamic (e.g.
person) categories and used in segmenting the frame into
static and dynamic regions.

Feature matching and optical flow – Sparse features are
used to obtain a camera pose estimate and subsequently for
frame warping and visual odometry. First, ORB features are



extracted and classified as static or dynamic using MI. The
static features are matched against a previously-created local
map of static features associated with the current keyframe
and the affine homography 2x2 matrix H relating F kf to
F in the image plane is computed using RANSAC. The
keyframe F kf is warped into the current frame using the
onboard VIC such that the resulting Fwarp is approximately
aligned with F . Any significant differences between Fwarp

and F are independent of camera motion and thus can be
exploited to segment dynamic objects. These differences can
be quantified using the dense optical flow OF between Cwarp

and C, and the depth difference DDiff = ∥Dwarp−D∥. The
reprojection error can be classified as static/dynamic based
on the reprojected distance similar to DynaSLAM [38].

∆z = zproj − z

∆z > θz
(1)

Superpixel RGB-D clustering – Superpixels are contin-
uous and non-overlapping clusters of pixels tiling an image,
each defined as s = {u0..m|ui ∈ Ω}. We use an efficient
GPU implementation provided by NVidia to segment each
new input F into superpixels which maximize depth, ori-
entation, and color consistency. Henceforth, operations are
performed on the resulting set of superpixels S rather than
on individual pixels, improving accuracy and efficiency of
further computation.

Masking – The final step of the image processing pipeline
concerns computing binary masks to separate the static and
dynamic parts of the input. The masks can be used to
filter inputs to other tasks by element-wise multiplication,
e.g. Cstat = C ⊙ Mstat. The above operations (clustering,
optical flow, and semantic segmentation) are independent
and computed in parallel. The mask of dynamic objects
is obtained in two steps: firstly, an initial dynamic mask
Minit : Ω 7→ {0, 1} is obtained using the previously
computed MI by classifying a superpixel s as dynamic if
the dominant label of the superpixel is a dynamic class or the
mean optical flow magnitude exceeds the threshold µhigh

OF .

δ(x, y) = 1 ⇔ x = y

MaxLabel(I, s, L) = argmax
l∈L

∑
u∈s

δ(I(u), l)

MI = {MaxLabel(I, s, L) ∈ Ldyn|s ∈ S, u ∈ s}

MOF =
⋃
s∈S

∥s̄OF∥22 > µhigh
OF

Minit = MOF ∪MI

(2)

The initial mask is then extended using a flood-fill method
(see Algorithm 1) relying on depth to select adjacent super-
pixels and relying on residuals computed from per-superpixel
statistics. These include the average depth difference, flow
magnitude, as well as distance to the closest dynamic key-
point.

Algorithm 1: Generating Mdyn using flood fill.
Input : Initial mask Minit, Superpixel stats Sstat

Output: Binary mask Mdyn

Let queue Q;
Let N (s) the set of neighbors of superpixel s;
Let Mdyn = 0 a binary-valued image;

Add all superpixels in Minit to Q;
foreach s ∈ Q do

foreach n ∈ N (s) do
if n ∈ Minit or n ∈ Mdyn or n ∈ Q then

continue;
end
if ||D(p)−D(n)|| < θD ·D(p) then

Add n to Q;
if R(n) > θR then

Mdyn(n) = 1;
end

end
end
Remove s from Q;

end
return Minit ∪Mdyn

R(s) = λOFROF + λdepthRdepth + λfeatRfeat

ROF = ∥s̄OF∥22
Rdepth = s̄DDiff

Rfeat = min(dist(s,Mdyn))

(3)

The static mask Mstat = ¬Mdyn is obtained by inverting
the dynamic mask Mdyn. Finally, the refined masks are used
to reclassify the extracted features and improve masking and
pose estimation in subsequent frames.

Additional optimizations – We can exploit the hardware
of the Nvidia Jetson AGX platform to speed up and par-
allelize computation. The DLA is an open-source hardware
design that accelerates convolutional neural network opera-
tions. Using the TensorRT SDK which provides inference op-
timisation functions including mixed-precision support and
kernel specialization, we employ the lightweight YOLACT
Edge [39] semantic segmentation method trained on the
MS COCO dataset. To ensure that any dynamic objects are
filtered, we use two thresholds: static objects require a high
prediction confidence (> 70%), while for dynamic objects
we use a 30% threshold. This facilitates noise reduction in
the semantic mapping of the static scene, while ensuring
that any dynamic objects are segmented out. Optical flow
is computed using the onboard Optical Flow Engine. To
compensate for the reduced quality compared to CNN-based
methods, we use the last 3 keyframes rather than a single
keyframe, and take the maximum flow for each superpixel.

D. Pose estimation

The pose estimation module estimates the camera pose
T = {t ∈ R3, R ∈ SO(3)} ∈ SE(3), defined as a rigid



transformation between the camera coordinate frame to the
world coordinate frame. The input to the module is a set of
matched keypoints classified as static by the image process-
ing module using the initial mask Minit and the geometric
threshold from eq. 1. While using the final mask Mdyn

We use Levenberg–Marquardt least-squares optimisation to
minimize the tracking loss Etrack.

R, t = argmin
R,t

Etrack

Etrack = λsparseEsparse + λdenseEdense

(4)

To maximise efficiency, only the sparse term is used between
keyframes. T is computed by minimizing the reprojection
error between matched keypoints M = {(x, xkf )i} be-
tween the keyframe and the frame. Balancing the accuracy-
efficiency tradeoff, both the sparse and the dense terms are
using when computing the pose of each keyframe. Edense

is the frame-to-model ICP registration between the projected
static depth frame V = π−1 (Dstat) and the reprojection of
the static reconstruction into the previous keyframe, similar
to the tracking stage of supereight [9].

Esparse =
∑

(x,xkf )∈M

ρ
(∥∥x− π

(
Rxkf + t

)∥∥2
2

)
Edense =

∑
u∈Ω

∥∥∥∥(V̂kf (û)− π (RV(u) + t)
)T

· N̂kf (û)

∥∥∥∥2
2

û = π
(
T−1

k−1Tkπ
−1(u)

)
(5)

E. CPU-based static-semantic reconstruction

Given RGB-D static pair, the estimated pose, and the
semantic segmentation, we aim to fuse the data over all
timesteps k ∈ {0..N} into a semantically-labelled 3D
representation of the static scene. We build upon supereight’s
multi-resolution occupancy mapping which leverages octrees
[40], [9]. The supereight pipeline contains 3 processing
stages: tracking, integration, and rendering. We use tracking
and rendering only on keyframes for use in pose estimation
as described in the previous section. The integration stage is
where the sensor data is fused into the dense static model
using an adaptive-resolution octree. We modify the octree
to include a probability distribution over the set of semantic
labels P (Lx = li), li ∈ L on each leaf node x initialized with
the uniform probability distribution. The integration stage
includes three processes: data fusion (single layer update),
upward propagation, and downward propagation. Data fusion
allocates new nodes and if necessary, updates the values via
downward propagation.

Downward propagation is an expensive step in the
pipeline, used when the camera moves closer to the surface
and allows for mapping at a finer resolution. Since camera
movement is generally smooth, performing this step at every
frame is redundant. We store the frame with the smallest
distance to the camera in a cache, along with its pose and
only perform the down propagation step on the cached frame.
Since the cached frame allows us the best resolution for

fusion, the labels are also updated in this step via bayesian
recursive update:

P (Lx | F0,...,k) = P (Lx | F0,...,k−1)P (I (x̂) = li | Fk)

Where I (x̂) is the pixel value of the node x reprojected into
the semantic frame.

F. GPU-based dynamic reconstruction

Problem definition – Given the camera pose TWC , dy-
namic RGB-D frame {Cdyn,Ddyn}, Optical Flow OFdyn,
and superpixels S at every time step, the goal is to fuse
the data into a non-rigidly deforming 3D model Pref . In
contrast with volumetric methods [11], [41], [16] which need
to convert between implicit and explicit representations to
register incoming data with the 3D model, we build upon
the efficient point-based representation of SurfelWarp [12],
which can be directly registered with new input.

The reconstruction pipeline can be summarized as follows:
given a new input, a warp function W is estimated to non-
rigidly deform the reference model into the live frame. Once
the two are aligned, the warped reference model is projected
into the camera frame and corresponding pixels are found.
Finally, data fusion is performed to update the reference
model with the new data. This paper will focus on the
optimisations we have developed in warp field estimation and
filtering the input to the pipeline. The details of alignment
and data fusion are described in SurfelWarp [12].

Warp field estimation – The reference and live models
Pref ,Plive consist of arrays of point and normal pairs
(surfels) P(·){vi, ni}. Additionally, the warp function W(p)
approximates the transformation for each pair Pref (i) into
the live frame necessary for integrating the new informa-
tion into the model. The warp function has an associated
embedded graph G = {N , E} defined by nodes N =
{
[
t ∈ R3, w ∈ R+,T ∈ SE(3)

]
} with position t, weight w

controlling the influence of a node and transformation T, as
well as edges E = [Ni,Nj ]. The node graph is initialized by
subsampling surfel positions at the first frame and extended
with new nodes when needed in order to cover the full extent
of the dynamic model.

Energy terms – We solve the underlying non-rigid iter-
ative closest point (ICP) using a GPU-accelerated precon-
ditioned conjugate gradient descent Gauss-Newton solver to
estimate the warp function parameters to that minimize the
error between Pref and Plive.

Wt = argminEtot(Wt−1,Pref ,Plive)

Etot = λdepthEdepth + λARAPEARAP + λcorrEcorr

(6)

The energy function contains the following terms:
A point-to-plane depth energy term. A surfel correspon-

dence map C between Pref and Plive is computed according
to SurfelWarp, pairing the warped model surfels p̂ref to the
live model ones plive. The loss is given by the distance



between the vertices, with the orientation nlive.

p̂ref = T−1 ∗W(pref )

C =
{
vi,ni|vi = {v̂ref , vlive},ni = {n̂ref , nlive}

}
Edepth(W) =

∑
{vi,ni}∈C

∥∥(nT
live(v̂ref − vlive)

∥∥2
2

(7)

We adopt the sparse correspondence energy term from [42]
using Global Patch Collider (GPC) [43] to match sparse
feature patches. The reasoning behind using this term is
that the sparse features are likely to reflect the general
movement of the dynamic model, and as such it leads to
faster convergence of Etot. Similarly to the depth loss we
use the L2 norm, in this case applied to the set of matched
features q with vertices in the live model.

M = {q, vlive}
q̂ = T−1 ∗W(q)

Ecorr(W) =
∑
m∈M

ρ
(
∥q̂− vlive∥22

) (8)

Finally, an as-rigid-as-possible (ARAP) regularization
term over all pair-wise connected nodes in the graph associ-
ated with the warp field. This has the effect of smoothing the
optimisation problem by “pulling” the graph nodes together
and prevents occlusions from breaking the model.

EARAP (W) =
∑
i∈G

∑
j∈E(i)

∥Tjtj −Titj∥22 (9)

Additional optimizations – Even under an effi-
cient formulation, non-rigid reconstruction is the most
computationally-expensive process in our pipeline. Thus we
introduce several high-level optimisations which minimally
impact reconstruction quality. Frame skipping is a simple
heuristic used widely to improve the speed of reconstruction
algorithms, however a naive approach using a fixed hyperpa-
rameter for frame skipping may cause reconstruction to fail,
as scene motion cannot be known a priori. Instead, use the
average flow of each superpixel to filter out those below the
threshold µdyn

OF , thus requiring the warp field estimation to
compute less parameters for every frame. The filtering step
is skipped for keyframes as well as every Nfull = 5 frames
in order to prevent error accumulation.

IV. EXPERIMENTS

All software and dependencies are compiled with gcc-7
and CUDA 10.2, using the highest level of optimisation,
including platform-specific optimisations. The static recon-
struction module uses OpenMP to distribute the load across
6 of the available 8 cores. One extra core is dedicated
to scheduling, while the final core is left for operating
system processes. We use the jetson-stats tool1 to
disable DVFS and lock all hardware clocks to the maximum
frequency afforded for a given power budget (30W). In the
following experiments we use λsparse = 0.1, λdense = 0.9
to estimate the pose for keyframes (see eq. 4).

1https://github.com/rbonghi/jetson_stats

Ours RE SF DS

sitting static 0.009 0.011 0.014 0.007
sitting xyz 0.021 0.026 0.039 0.015

sitting halfsphere 0.035 0.038 0.041 0.028
walking static 0.011 0.014 0.015 0.007
walking xyz 0.025 0.074 0.093 0.017

walking halfsphere 0.035 0.048 0.681 0.026

TABLE II: ATE-RMSE(m) on the TUM RGB-D dataset
dynamic sequences.
Re = ReFusion, SF = StaticFusion, DS = DynaSLAM

Ours RE SF DS

balloon 0.028 0.175 0.233 0.030
balloon2 0.030 0.254 0.293 0.029

balloon tracking 0.045 0.302 0.221 0.049
balloon tracking2 0.033 0.322 0.366 0.035

crowd 0.016 0.204 3.586 0.016
crowd2 0.027 0.155 0.215 0.031
crowd3 0.023 0.137 0.168 0.038

kidnapping box 0.030 0.148 0.336 0.029
kidnapping box2 0.030 0.161 0.263 0.035
moving no box 0.070 0.071 0.141 0.232
moving no box2 0.029 0.179 0.364 0.039
moving o box 0.343 0.343 0.331 0.044

moving o box2 0.443 0.528 0.309 0.263
person tracking 0.070 0.289 0.484 0.061
person tracking2 0.071 0.463 0.626 0.078
placing no box 0.088 0.106 0.125 0.575

placing no box2 0.020 0.141 0.177 0.021
placing no box3 0.051 0.174 0.256 0.058

placing o box 0.324 0.571 0.330 0.255
removing no box 0.020 0.041 0.136 0.016

removing no box2 0.025 0.111 0.129 0.021
removing o box 0.314 0.222 0.334 0.291

synchronous 0.014 0.441 0.446 0.015
synchronous2 0.010 0.022 0.027 0.009

TABLE III: ATE-RMSE(m) on the Bonn Dynamic dataset

A. Pose estimation

We use the dynamic sequences of the TUM RGB-D
dataset [44] to evaluate the accuracy of our pose estima-
tion against previous SLAM systems designed for dynamic
environments:

• StaticFusion, a surfel-based approach which uses pose
registration residuals between the reprojected 3D model
and the most recent frame to segment dynamic ele-
ments. Runs below 15 frames per second (FPS).

• ReFusion, a voxel-based approach using a similar reg-
istration residual based segmentation. Runs at approx.
0.5 FPS.

• DynaSLAM, a sparse SLAM system which uses a joint
geometric and semantic approach to dynamic object
segmentation. Runs below 10 FPS.

The results of the experiments, presented in Tables II and
III, show that our performance surpasses dense approaches
such as ReFusion and StaticFusion, and often performs better
than sparse ones, such as DynaSLAM, while building a dense
semantic 3D model. Our system is the only one running
in real time on the power constrained device, thanks to
the heterogeneous computation afforded by the hardware.
We note that the worst performance for our system is on

https://github.com/rbonghi/jetson_stats


(a) DynaSLAM (b) ReFusion

(c) Ours (only optical flow) (d) Ours (final)

Fig. 3: Qualitative comparison of masking

”obstruction” sequences of the Bonn dataset, where a large
box covers the frame for extended periods, the deterioration
in performance suggesting that our system is prone to ”the
kidnapping problem”.

B. Masking

We compare the quality of masking with that produced
by competing methods, such as ReFusion and DynaSLAM
in Fig. 3. Note that the final mask produced by our system
is sharp and includes both objects recognised as dynamic by
the semantic module, as well as other moving objects (in
this, case a balloon), thanks to the flow-based segmentation.
In contrast, DynaSLAM misses the balloon, as it is neither
recognized by their semantic module nor does it have enough
features for the multi-view geometry module to classify
as dynamic. Meanwhile, ReFusion typically oversegments
or undersegments when computing the mask, and always
produces dilated masks, exceeding the boundary of the
object. This may be acceptable when non-rigidly deforming
objects are not being reconstructed, but in our case could
negatively impact the dynamic reconstruction.

C. 3D reconstruction

Our final static 3D reconstruction output is similar to
ReFusion, however during operation there are differences
that may prove important. Detecting objects known a priori
to be dynamic allows us to segment them out before they
move, thus minimizing artefacts not only in the final model,
but during operation as well. Figure 4a demonstrates the dif-
ference on a sequence from the TUM RGB-D dataset. Both
systems are able to produce clean final outputs, removing
most of the artefacts produced, however ACEFusion creates
fewer artefacts to begin with.

V. CONCLUSIONS

We have presented ACEFusion, an efficient and accurate
Spatial AI system. We achieve comparable accuracy to sparse
SLAM systems, such as DynaSLAM, while running in real

(a) ReFusion (left) vs ACEFusion reconstructions running on the
walking xyz sequence of the TUM RGB-D dataset.

(b) Comparison of the reconstruction error of ReFusion (left) and
ACEFusion (right) on the crowd3 sequence of the Bonn RGB-D
dataset.

Fig. 4: Qualitative evaluation of 3D reconstruction

time on a low-power platform and solving a more complex
problem than competing systems; ACEFusion builds dense
semantically-labelled models of static and non-rigidly de-
forming geometry.

Whereas other SLAM systems typically use a single rep-
resentation, ACEFusion adopts a surfel-based representation
for dynamic objects, while the static background is modelled
using octrees. While prior art requires powerful desktop
GPUs to achieve real-time performance, ACEFusion is the
first to distribute the computational load of Spatial AI system
across multiple hardware accelerators: the Deep Learning
Accelerators (DLA), Video Image Compositor (VIC), gen-
eral purpose processing cores, and GPU available on the
Nvidia Jetson Xavier AGX board.

The experiments have showed that the performance ACE-
Fusion surpasses dense approaches, such as ReFusion and
StaticFusion, and often performs better than sparse ones,
such as DynaSLAM, while building a dense semantic 3D
model. Our system is the only one running in real time
on the power constrained device. We have also compared
the quality of masking with that produced by ReFusion and
DynaSLAM. The final masks produced by ACEFusion are
sharp and includes multiple dynamic moving objects thanks
to the flow-based segmentation.
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