480 research outputs found

    Server-Aided Revocable Predicate Encryption: Formalization and Lattice-Based Instantiation

    Full text link
    Efficient user revocation is a necessary but challenging problem in many multi-user cryptosystems. Among known approaches, server-aided revocation yields a promising solution, because it allows to outsource the major workloads of system users to a computationally powerful third party, called the server, whose only requirement is to carry out the computations correctly. Such a revocation mechanism was considered in the settings of identity-based encryption and attribute-based encryption by Qin et al. (ESORICS 2015) and Cui et al. (ESORICS 2016), respectively. In this work, we consider the server-aided revocation mechanism in the more elaborate setting of predicate encryption (PE). The latter, introduced by Katz, Sahai, and Waters (EUROCRYPT 2008), provides fine-grained and role-based access to encrypted data and can be viewed as a generalization of identity-based and attribute-based encryption. Our contribution is two-fold. First, we formalize the model of server-aided revocable predicate encryption (SR-PE), with rigorous definitions and security notions. Our model can be seen as a non-trivial adaptation of Cui et al.'s work into the PE context. Second, we put forward a lattice-based instantiation of SR-PE. The scheme employs the PE scheme of Agrawal, Freeman and Vaikuntanathan (ASIACRYPT 2011) and the complete subtree method of Naor, Naor, and Lotspiech (CRYPTO 2001) as the two main ingredients, which work smoothly together thanks to a few additional techniques. Our scheme is proven secure in the standard model (in a selective manner), based on the hardness of the Learning With Errors (LWE) problem.Comment: 24 page

    Anonymous and Adaptively Secure Revocable IBE with Constant Size Public Parameters

    Full text link
    In Identity-Based Encryption (IBE) systems, key revocation is non-trivial. This is because a user's identity is itself a public key. Moreover, the private key corresponding to the identity needs to be obtained from a trusted key authority through an authenticated and secrecy protected channel. So far, there exist only a very small number of revocable IBE (RIBE) schemes that support non-interactive key revocation, in the sense that the user is not required to interact with the key authority or some kind of trusted hardware to renew her private key without changing her public key (or identity). These schemes are either proven to be only selectively secure or have public parameters which grow linearly in a given security parameter. In this paper, we present two constructions of non-interactive RIBE that satisfy all the following three attractive properties: (i) proven to be adaptively secure under the Symmetric External Diffie-Hellman (SXDH) and the Decisional Linear (DLIN) assumptions; (ii) have constant-size public parameters; and (iii) preserve the anonymity of ciphertexts---a property that has not yet been achieved in all the current schemes

    Adaptive-ID Secure Revocable Identity-Based Encryption from Lattices via Subset Difference Method

    Get PDF
    In view of the expiration or reveal of user\u27s private credential (or private key) in a realistic scenario, identity-based encryption (IBE) schemes with an efficient key revocation mechanism, or for short, revocable identity-based encryption (RIBE) schemes, become prominently significant. In this paper, we present an RIBE scheme from lattices by combining two Agrawal et al.\u27s IBE schemes with the subset difference (SD) method. Our scheme is secure against adaptive identity-time attacks in the standard model under the learning with errors (LWE) assumption. In particular, our scheme serves as one solution to the challenge posed by Chen et al.(ACISP \u2712)

    A brief review of revocable ID-based public key cryptosystem

    Get PDF
    SummaryThe design of ID-based cryptography has received much attention from researchers. However, how to revoke the misbehaviour/compromised user in ID-based public key cryptosystem becomes an important research issue. Recently, Tseng and Tsai proposed a novel public key cryptosystem called revocable ID-based public key cryptosystem (RIBE) to solve the revocation problem. Later on, numerous research papers based on the Tseng-Tsai key RIBE were proposed. In this paper, we brief review Tseng and Tsai's RIBE. We hope this review can help the readers to understand the Tseng and Tsai's revocable ID-based public key cryptosystem

    Contributions to Identity-Based Broadcast Encryption and Its Anonymity

    Get PDF
    Broadcast encryption was introduced to improve the efficiency of encryption when a message should be sent to or shared with a group of users. Only the legitimate users chosen in the encryption phase are able to retrieve the message. The primary challenge in construction a broadcast encryption scheme is to achieve collusion resistance such that the unchosen users learn nothing about the content of the encrypted message even they collude

    Mergeable and revocable identity-based encryption

    Get PDF
    Identity-based encryption (IBE) has been extensively studied and widely used in various applications since Boneh and Franklin proposed the first practical scheme based on pairing. In that seminal work, it has also been pointed out that providing an efficient revocation mechanism for IBE is essential. Hence, revocable identity-based encryption (RIBE) has been proposed in the literature to offer an efficient revocation mechanism. In contrast to revocation, another issue that will also occur in practice is to combine two or multiple IBE systems into one system, e.g., due to the merge of the departments or companies. However, this issue has not been formally studied in the literature and the naive solution of creating a completely new system is inefficient. In order to efficiently address this problem, in this paper we propose the notion of mergeable and revocable identity-based encryption (MRIBE). Our scheme provides the first solution to efficiently revoke users and merge multiple IBE systems into a single system. The proposed scheme also has several nice features: when two systems are merged, there is no secure channel needed for the purpose of updating user private keys; and the size of the user private key remains unchanged when multiple systems are merged. We also propose a new security model for MRIBE, which is an extension of the security model for RIBE, and prove that the proposed scheme is semantically secure without random oracles

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Efficient Revocable ID-Based Signature With Cloud Revocation Server

    Get PDF
    Over the last few years, identity-based cryptosystem (IBC) has attracted widespread attention because it avoids the high overheads associated with public key certificate management. However, an unsolved but critical issue about IBC is how to revoke a misbehaving user. There are some revocable identity-based encryption schemes that have been proposed recently, but little work on the revocation problem of identity-based signature has been undertaken so far. One approach for revocation in identity-based settings is to update users\u27 private keys periodically, which is usually done by the key generation center (KGC). But with this approach, the load on the KGC will increase quickly when the number of users increases. In this paper, we propose an efficient revocable identity-based signature (RIBS) scheme in which the revocation functionality is outsourced to a cloud revocation server (CRS). In our proposed approach, most of the computations needed during key-updates are offloaded to the CRS. We describe the new framework and the security model for the RIBS scheme with CRS and we prove that the proposed scheme is existentially unforgeable against adaptively chosen messages and identity attacks in the random oracle model. Furthermore, we monstrate that our scheme outperforms previous IBS schemes in terms of lower computation and communication costs

    Uniqueness Based Records Out Cause With Complete Audit In The Clouds

    Get PDF
    CRA must retain an arbitrary confidential value for users without affecting the security of the revocable IBE plan. In the Search Engine Optimization and Elmira Plan, for each user, each user creates a secret key by hitting some partial keys, which depend on the partial keys that grandparents use in the hierarchy tree. Another drawback is the lack of scalability, which means that the KU-CSP should have a secret value for each user. In this article, we recommend a new, revocable IBE plan with Cloud Revocation Authority to address each of the shortcomings, i.e. the performance is greatly improved and the CRA maintains system confidentiality for users only. Finally, we expanded the proposed IBE revocable plan to provide a CRA-supported certification plan for a limited time period to manage multiple cloud services. In the current system, bad-behaved users / at-risk in ID-PKS configuration are naturally high. The immediate cancellation method employs a reliable web-authorizing authority to reduce the burden of PKG management and help users decode the encrypted text. For experimental results and reward analysis, our plan is perfect for mobile devices. For security analysis, we make it clear that our plan is completely safe against adaptive recognition attacks according to Daffier-Hellman's two-pronged assumption. Outlines define the structure of an IBE cancellable plan with CRA and define their own security concepts to design potential threats and attacks. CRA Assisted Authentication Plan with Limited Time Rights to Manage Multiple Cloud Services

    A secure IoT cloud storage system with fine-grained access control and decryption key exposure resistance

    Get PDF
    Internet of Things (IoT) cloud provides a practical and scalable solution to accommodate the data management in large-scale IoT systems by migrating the data storage and management tasks to cloud service providers (CSPs). However, there also exist many data security and privacy issues that must be well addressed in order to allow the wide adoption of the approach. To protect data confidentiality, attribute-based cryptosystems have been proposed to provide fine-grained access control over encrypted data in IoT cloud. Unfortunately, the existing attributed-based solutions are still insufficient in addressing some challenging security problems, especially when dealing with compromised or leaked user secret keys due to different reasons. In this paper, we present a practical attribute-based access control system for IoT cloud by introducing an efficient revocable attribute-based encryption scheme that permits the data owner to efficiently manage the credentials of data users. Our proposed system can efficiently deal with both secret key revocation for corrupted users and accidental decryption key exposure for honest users. We analyze the security of our scheme with formal proofs, and demonstrate the high performance of the proposed system via experiments
    corecore