1,102 research outputs found

    Edge-Aware Spatial Denoising Filtering Based on a Psychological Model of Stimulus Similarity

    Get PDF
    Noise reduction is a fundamental operation in image quality enhancement. In recent years, a large body of techniques at the crossroads of statistics and functional analysis have been developed to minimize the blurring artifact introduced in the denoising process. Recent studies focus on edge-aware filters due to their tendency to preserve image structures. In this study, we adopt a psychological model of similarity based on Shepard’s generalization law and introduce a new signal-dependent window selection technique. Such a focus is warranted because blurring is essentially a cognitive act related to the human perception of physical stimuli (pixels). The proposed windowing technique can be used to implement a wide range of edge-aware spatial denoising filters, thereby transforming them into nonlocal filters. We employ simulations using both synthetic and real image samples to evaluate the performance of the proposed method by quantifying the enhancement in the signal strength, noise suppression, and structural preservation measured in terms of the Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), and Structural Similarity (SSIM) index, respectively. In our experiments, we observe that incorporating the proposed windowing technique in the design of mean, median, and nonlocalmeans filters substantially reduces the MSE while simultaneously increasing the PSNR and the SSIM

    Image Information Distance Analysis and Applications

    Get PDF
    Image similarity or distortion assessment is fundamental to a broad range of applications throughout the field of image processing and machine vision. These include image restoration, denoising, coding, communication, interpolation, registration, fusion, classification and retrieval, as well as object detection, recognition, and tracking. Many existing image similarity measures have been proposed to work with specific types of image distortions (e.g., JPEG compression). There are also methods such as the structural similarity (SSIM) index that are applicable to a wider range of applications. However, even these "general-purpose" methods offer limited scopes in their applications. For example, SSIM does not apply or work properly when significant geometric changes exist between the two images being compared. The theory of Kolmogorov complexity provides solid groundwork for a generic information distance metric between any objects that minorizes all metrics in the class. The Normalized Information Distance (NID) metric provides a more useful framework. While appealing, the challenge lies in the implementation, mainly due to the non-computable nature of Kolmogorov complexity. To overcome this, a Normalized Compression Distance (NCD) measure was proposed, which is an effective approximation of NID and has found successful applications in the fields of bioinformatics, pattern recognition, and natural language processing. Nevertheless, the application of NID for image similarity and distortion analysis is still in its early stage. Several authors have applied the NID framework and the NCD algorithm to image clustering, image distinguishability, content-based image retrieval and video classification problems, but most reporting only moderate success. Moreover, due to their focuses on ! specific applications, the generic property of NID was not fully exploited. In this work, we aim for developing practical solutions for image distortion analysis based on the information distance framework. In particular, we propose two practical approaches to approximate NID for image similarity and distortion analysis. In the first approach, the shortest program that converts one image to another is found from a list of available transformations and a generic image similarity measure is built on computing the length of this shortest program as an approximation of the conditional Kolmogorov complexity in NID. In the second method, the complexity of the objects is approximated using Shannon entropy. Specifically we transform the reference and distorted images into wavelet domain and assume local independence among image subbands. Inspired by the Visual Information Fidelity (VIF) approach, the Gaussian Scale Mixture (GSM) model is adopted for Natural Scene Statistics (NSS) of the images to simplify the entropy computation. When applying image information distance framework in real-world applications, we find information distance measures often lead to useful features in many image processing applications. In particular, we develop a photo retouching distortion measure based on training a Gaussian kernel Support Vector Regression (SVR) model using information theoretic features extracted from a database of original and edited images. It is shown that the proposed measure is well correlated with subjective ranking of the images. Moreover, we propose a tone mapping operator parameter selection scheme for High Dynamic Range (HDR) images. The scheme attempts to find tone mapping parameters that minimize the NID of the HDR image and the resulting Low Dynamic Range (LDR) image, and thereby minimize the information loss in HDR to LDR tone mapping. The resulting images created by minimizing NID exhibit enhanced image quality

    Cross Dynamic Range And Cross Resolution Objective Image Quality Assessment With Applications

    Get PDF
    In recent years, image and video signals have become an indispensable part of human life. There has been an increasing demand for high quality image and video products and services. To monitor, maintain and enhance image and video quality objective image and video quality assessment tools play crucial roles in a wide range of applications throughout the field of image and video processing, including image and video acquisition, communication, interpolation, retrieval, and displaying. A number of objective image and video quality measures have been introduced in the last decades such as mean square error (MSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). However, they are not applicable when the dynamic range or spatial resolution of images being compared is different from that of the corresponding reference images. In this thesis, we aim to tackle these two main problems in the field of image quality assessment. Tone mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Most TMOs have been designed in the absence of a well-established and subject-validated image quality assessment (IQA) model, without which fair comparisons and further improvement are difficult. We propose an objective quality assessment algorithm for tone-mapped images using HDR images as references by combining 1) a multi-scale signal fidelity measure based on a modified structural similarity (SSIM) index; and 2) a naturalness measure based on intensity statistics of natural images. To evaluate the proposed Tone-Mapped image Quality Index (TMQI), its performance in several applications and optimization problems is provided. Specifically, the main component of TMQI known as structural fidelity is modified and adopted to enhance the visualization of HDR medical images on standard displays. Moreover, a substantially different approach to design TMOs is presented, where instead of using any pre-defined systematic computational structure (such as image transformation or contrast/edge enhancement) for tone-mapping, we navigate in the space of all LDR images, searching for the image that maximizes structural fidelity or TMQI. There has been an increasing number of image interpolation and image super-resolution (SR) algorithms proposed recently to create images with higher spatial resolution from low-resolution (LR) images. However, the evaluation of such SR and interpolation algorithms is cumbersome. Most existing image quality measures are not applicable because LR and resultant high resolution (HR) images have different spatial resolutions. We make one of the first attempts to develop objective quality assessment methods to compare LR and HR images. Our method adopts a framework based on natural scene statistics (NSS) where image quality degradation is gauged by the deviation of its statistical features from NSS models trained upon high quality natural images. In particular, we extract frequency energy falloff, dominant orientation and spatial continuity statistics from natural images and build statistical models to describe such statistics. These models are then used to measure statistical naturalness of interpolated images. We carried out subjective tests to validate our approach, which also demonstrates promising results. The performance of the proposed measure is further evaluated when applied to parameter tuning in image interpolation algorithms

    Automatic Detection of Cone Photoreceptors In Split Detector Adaptive Optics Scanning Light Ophthalmoscope Images

    Get PDF
    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images

    Segmentation and Fracture Detection in CT Images for Traumatic Pelvic Injuries

    Get PDF
    In recent decades, more types and quantities of medical data have been collected due to advanced technology. A large number of significant and critical information is contained in these medical data. High efficient and automated computational methods are urgently needed to process and analyze all available medical data in order to provide the physicians with recommendations and predictions on diagnostic decisions and treatment planning. Traumatic pelvic injury is a severe yet common injury in the United States, often caused by motor vehicle accidents or fall. Information contained in the pelvic Computed Tomography (CT) images is very important for assessing the severity and prognosis of traumatic pelvic injuries. Each pelvic CT scan includes a large number of slices. Meanwhile, each slice contains a large quantity of data that may not be thoroughly and accurately analyzed via simple visual inspection with the desired accuracy and speed. Hence, a computer-assisted pelvic trauma decision-making system is needed to assist physicians in making accurate diagnostic decisions and determining treatment planning in a short period of time. Pelvic bone segmentation is a vital step in analyzing pelvic CT images and assisting physicians with diagnostic decisions in traumatic pelvic injuries. In this study, a new hierarchical segmentation algorithm is proposed to automatically extract multiplelevel bone structures using a combination of anatomical knowledge and computational techniques. First, morphological operations, image enhancement, and edge detection are performed for preliminary bone segmentation. The proposed algorithm then uses a template-based best shape matching method that provides an entirely automated segmentation process. This is followed by the proposed Registered Active Shape Model (RASM) algorithm that extracts pelvic bone tissues using more robust training models than the Standard ASM algorithm. In addition, a novel hierarchical initialization process for RASM is proposed in order to address the shortcoming of the Standard ASM, i.e. high sensitivity to initialization. Two suitable measures are defined to evaluate the segmentation results: Mean Distance and Mis-segmented Area to quantify the segmentation accuracy. Successful segmentation results indicate effectiveness and robustness of the proposed algorithm. Comparison of segmentation performance is also conducted using both the proposed method and the Snake method. A cross-validation process is designed to demonstrate the effectiveness of the training models. 3D pelvic bone models are built after pelvic bone structures are segmented from consecutive 2D CT slices. Automatic and accurate detection of the fractures from segmented bones in traumatic pelvic injuries can help physicians detect the severity of injuries in patients. The extraction of fracture features (such as presence and location of fractures) as well as fracture displacement measurement, are vital for assisting physicians in making faster and more accurate decisions. In this project, after bone segmentation, fracture detection is performed using a hierarchical algorithm based on wavelet transformation, adaptive windowing, boundary tracing and masking. Also, a quantitative measure of fracture severity based on pelvic CT scans is defined and explored. The results are promising, demonstrating that the proposed method not only capable of automatically detecting both major and minor fractures, but also has potentials to be used for clinical applications

    A novel framework for MR image segmentation and quantification by using MedGA.

    Get PDF
    BACKGROUND AND OBJECTIVES: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and automatically determining a suitable optimal threshold for bimodal Magnetic Resonance (MR) images, by designing an intelligent image analysis framework tailored to effectively assist the physicians during their decision-making tasks. METHODS: In this work, we present a novel evolutionary framework for image enhancement, automatic global thresholding, and segmentation, which is here applied to different clinical scenarios involving bimodal MR image analysis: (i) uterine fibroid segmentation in MR guided Focused Ultrasound Surgery, and (ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Our framework exploits MedGA as a pre-processing stage. MedGA is an image enhancement method based on Genetic Algorithms that improves the threshold selection, obtained by the efficient Iterative Optimal Threshold Selection algorithm, between the underlying sub-distributions in a nearly bimodal histogram. RESULTS: The results achieved by the proposed evolutionary framework were quantitatively evaluated, showing that the use of MedGA as a pre-processing stage outperforms the conventional image enhancement methods (i.e., histogram equalization, bi-histogram equalization, Gamma transformation, and sigmoid transformation), in terms of both MR image enhancement and segmentation evaluation metrics. CONCLUSIONS: Thanks to this framework, MR image segmentation accuracy is considerably increased, allowing for measurement repeatability in clinical workflows. The proposed computational solution could be well-suited for other clinical contexts requiring MR image analysis and segmentation, aiming at providing useful insights for differential diagnosis and prognosis

    PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

    Get PDF
    In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR's computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical Imaging. v2: wadded funders acknowledgements to preprin

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio
    corecore