42 research outputs found

    Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction

    Full text link
    The radiation dose in computed tomography (CT) examinations is harmful for patients but can be significantly reduced by intuitively decreasing the number of projection views. Reducing projection views usually leads to severe aliasing artifacts in reconstructed images. Previous deep learning (DL) techniques with sparse-view data require sparse-view/full-view CT image pairs to train the network with supervised manners. When the number of projection view changes, the DL network should be retrained with updated sparse-view/full-view CT image pairs. To relieve this limitation, we present a fully unsupervised score-based generative model in sinogram domain for sparse-view CT reconstruction. Specifically, we first train a score-based generative model on full-view sinogram data and use multi-channel strategy to form highdimensional tensor as the network input to capture their prior distribution. Then, at the inference stage, the stochastic differential equation (SDE) solver and data-consistency step were performed iteratively to achieve fullview projection. Filtered back-projection (FBP) algorithm was used to achieve the final image reconstruction. Qualitative and quantitative studies were implemented to evaluate the presented method with several CT data. Experimental results demonstrated that our method achieved comparable or better performance than the supervised learning counterparts.Comment: 11 pages, 12 figure

    Stage-by-stage Wavelet Optimization Refinement Diffusion Model for Sparse-View CT Reconstruction

    Full text link
    Diffusion models have emerged as potential tools to tackle the challenge of sparse-view CT reconstruction, displaying superior performance compared to conventional methods. Nevertheless, these prevailing diffusion models predominantly focus on the sinogram or image domains, which can lead to instability during model training, potentially culminating in convergence towards local minimal solutions. The wavelet trans-form serves to disentangle image contents and features into distinct frequency-component bands at varying scales, adeptly capturing diverse directional structures. Employing the Wavelet transform as a guiding sparsity prior significantly enhances the robustness of diffusion models. In this study, we present an innovative approach named the Stage-by-stage Wavelet Optimization Refinement Diffusion (SWORD) model for sparse-view CT reconstruction. Specifically, we establish a unified mathematical model integrating low-frequency and high-frequency generative models, achieving the solution with optimization procedure. Furthermore, we perform the low-frequency and high-frequency generative models on wavelet's decomposed components rather than sinogram or image domains, ensuring the stability of model training. Our method rooted in established optimization theory, comprising three distinct stages, including low-frequency generation, high-frequency refinement and domain transform. Our experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods both quantitatively and qualitatively

    Directional Sinogram Inpainting for Limited Angle Tomography

    Get PDF
    In this paper we propose a new joint model for the reconstruction of tomography data under limited angle sampling regimes. In many applications of Tomography, e.g. Electron Microscopy and Mammography, physical limitations on acquisition lead to regions of data which cannot be sampled. Depending on the severity of the restriction, reconstructions can contain severe, characteristic, artefacts. Our model aims to address these artefacts by inpainting the missing data simultaneously with the reconstruction. Numerically, this problem naturally evolves to require the minimisation of a non-convex and non-smooth functional so we review recent work in this topic and extend results to fit an alternating (block) descent framework. \oldtext{We illustrate the effectiveness of this approach with numerical experiments on two synthetic datasets and one Electron Microscopy dataset.} \newtext{We perform numerical experiments on two synthetic datasets and one Electron Microscopy dataset. Our results show consistently that the joint inpainting and reconstruction framework can recover cleaner and more accurate structural information than the current state of the art methods

    DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction

    Full text link
    Limited-Angle Computed Tomography (LACT) is a non-destructive evaluation technique used in a variety of applications ranging from security to medicine. The limited angle coverage in LACT is often a dominant source of severe artifacts in the reconstructed images, making it a challenging inverse problem. We present DOLCE, a new deep model-based framework for LACT that uses a conditional diffusion model as an image prior. Diffusion models are a recent class of deep generative models that are relatively easy to train due to their implementation as image denoisers. DOLCE can form high-quality images from severely under-sampled data by integrating data-consistency updates with the sampling updates of a diffusion model, which is conditioned on the transformed limited-angle data. We show through extensive experimentation on several challenging real LACT datasets that, the same pre-trained DOLCE model achieves the SOTA performance on drastically different types of images. Additionally, we show that, unlike standard LACT reconstruction methods, DOLCE naturally enables the quantification of the reconstruction uncertainty by generating multiple samples consistent with the measured data.Comment: 29 pages, 21 figure
    corecore